There is increasing evidence that Androgen Receptor (AR) expression has prognostic usefulness in Triple negative breast cancer (TNBC), where tumors that lack AR expression are considered “Quadruple negative” Breast Cancers (“QNBC”). However, a comprehensive analysis of AR expression within all breast cancer subtypes or stratified by race has not been reported. We assessed AR mRNA expression in 925 tumors from The Cancer Genome Atlas (TCGA), and 136 tumors in 2 confirmation sets. AR protein expression was determined by immunohistochemistry in 197 tumors from a multi-institutional cohort, for a total of 1258 patients analyzed. Cox hazard ratios were used to determine correlations to PAM50 breast cancer subtypes, and TNBC subtypes. Overall, AR-negative patients are diagnosed at a younger age compared to AR-positive patients, with the average age of AA AR-negative patients being, 49. AA breast tumors express AR at lower rates compared to Whites, independent of ER and PR expression (p<0.0001). AR-negative patients have a (66.60; 95% CI, 32–146) odds ratio of being basal-like compared to other PAM50 subtypes, and this is associated with an increased time to progression and decreased overall survival. AA “QNBC” patients predominately demonstrated BL1, BL2 and IM subtypes, with differential expression of E2F1, NFKBIL2, CCL2, TGFB3, CEBPB, PDK1, IL12RB2, IL2RA, and SOS1 genes compared to white patients. Immune checkpoint inhibitors PD-1, PD-L1, and CTLA-4 were significantly upregulated in both overall “QNBC” and AA “QNBC” patients as well. Thus, AR could be used as a prognostic marker for breast cancer, particularly in AA “QNBC” patients.
Objective: To investigate subtype-specific risk of germline alleles associated with triple negative breast cancer (TNBC) in African ancestry populations. Background: Breast cancer (BC) mortality is higher in African American (AA) compared to White American (WA) women; this disparity is partly explained by 2-fold higher TNBC incidence. Methods: We used a surgically maintained biospecimen cohort of 2884 BC cases. Subsets of the total (760 AA; 962 WA; 910 West African/Ghanaian; 252 East African/Ethiopian) were analyzed for genotypes of candidate alleles. A subset of 417 healthy controls were also genotyped, to measure associations with overall BC risk and TNBC. Results: TNBC frequency was highest in Ghanaian and AA cases (49% and 44% respectively; P < 0.0001) and lowest in Ethiopian and WA cases (17% and 24% respectively; P < 0.0001). TNBC cases had higher West African ancestry than non-TNBC (P < 0.0001). Frequency of the Duffy-null allele (rs2814778; an African ancestral variant adopted under selective pressure as protection against malaria) was associated with TNBC-specific risk (P < 0.0001), quantified West African Ancestry (P < 0.0001) and was more common in AA, Ghanaians, and TNBC cases. Additionally, rs4849887 was significantly associated with overall BC risk, and both rs2363956 and rs13000023 were associated with TNBC-specific risk, although none as strongly as the Duffy-null variant. Conclusions: West African ancestry is strongly correlated with TNBC status, as well as germline variants related to BC risk. The Duffy-null allele was associated with TNBC risk in our cohort.
Women of sub-Saharan African descent have disproportionately higher incidence of Triple Negative Breast Cancer (TNBC), and TNBC-specific mortality. Population comparative studies show racial differences in TNBC biology, including higher prevalence of basal-like and Quadruple-Negative subtypes in African Americans (AA). However, previous investigations relied on self-reported race (SRR) of primarily United States (US) populations. Due to heterogenous genetic admixture, and biological consequences of social determinants, the true association of African ancestry with TNBC biology is unclear. To address this, we conducted RNAseq on an international cohort of AAs, west and east Africans with TNBC. Using comprehensive genetic ancestry estimation in this African-enriched cohort, we found expression of 613 genes associated with African ancestry and 2000+ associated with regional African ancestry. A subset of African-associated genes also showed differences in normal breast tissue. Pathway enrichment and deconvolution of tumor cellular composition revealed tumor-associated immunological profiles are distinct in patients of African descent.
Background: Tumor-specific immune response is an important aspect of disease prognosis and ultimately impacts treatment decisions for innovative immunotherapies. The atypical chemokine receptor 1 (ACKR1 or DARC) gene plays a pivotal role in immune regulation and harbors several singlenucleotide variants (SNV) that are specific to sub-Saharan African ancestry. Methods: Using computational The Cancer Genome Atlas (TCGA) analysis, case-control clinical cohort Luminex assays, and CIBERSORT deconvolution, we identified distinct immune cell profile-associated DARC/ACKR1 tumor expression and race with increased macrophage subtypes and regulatory T cells in DARC/ACKR1-high tumors. Results: In this study, we report the clinical relevance of DARC/ACKR1 tumor expression in breast cancer, in the context of a tumor immune response that may be associated with sub-Saharan African ancestry. Briefly, we found that for infiltrating carcinomas, African Americans have a higher proportion of DARC/ACKR1-negative tumors compared with white Americans, and DARC/ACKR1 tumor expression is correlated with proinflammatory chemokines, CCL2/MCP-1 (P <0.0001) and anticorrelated with CXCL8/IL8 (P <0.0001). Sub-Saharan African-specific DARC/ACKR1 alleles likely drive these correlations. Relapse-free survival (RFS) and overall survival (OS) were significantly longer in individuals with DARC/ACKR1-high tumors (P <1.0 Â 10 À16 and P <2.2 Â 10 À6 , respectively) across all molecular tumor subtypes. Conclusions: DARC/AKCR1 regulates immune responses in tumors, and its expression is associated with sub-Saharan African-specific alleles. DARC/ACKR1-positive tumors will have a distinct immune response compared with DARC/ AKCR1-negative tumors. Impact: This study has high relevance in cancer management, as we introduce a functional regulator of inflammatory chemokines that can determine an infiltrating tumor immune cell landscape that is distinct among patients of African ancestry.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.