Background The UK COVID-19 vaccination programme has prioritised vaccination of those at the highest risk of COVID-19 mortality and hospitalisation. The programme was rolled out in Scotland during winter 2020–21, when SARS-CoV-2 infection rates were at their highest since the pandemic started, despite social distancing measures being in place. We aimed to estimate the frequency of COVID-19 hospitalisation or death in people who received at least one vaccine dose and characterise these individuals. Methods We conducted a prospective cohort study using the Early Pandemic Evaluation and Enhanced Surveillance of COVID-19 (EAVE II) national surveillance platform, which contained linked vaccination, primary care, RT-PCR testing, hospitalisation, and mortality records for 5·4 million people (around 99% of the population) in Scotland. Individuals were followed up from receiving their first dose of the BNT162b2 (Pfizer–BioNTech) or ChAdOx1 nCoV-19 (Oxford–AstraZeneca) COVID-19 vaccines until admission to hospital for COVID-19, death, or the end of the study period on April 18, 2021. We used a time-dependent Poisson regression model to estimate rate ratios (RRs) for demographic and clinical factors associated with COVID-19 hospitalisation or death 14 days or more after the first vaccine dose, stratified by vaccine type. Findings Between Dec 8, 2020, and April 18, 2021, 2 572 008 individuals received their first dose of vaccine—841 090 (32·7%) received BNT162b2 and 1 730 918 (67·3%) received ChAdOx1. 1196 (<0·1%) individuals were admitted to hospital or died due to COVID-19 illness (883 hospitalised, of whom 228 died, and 313 who died due to COVID-19 without hospitalisation) 14 days or more after their first vaccine dose. These severe COVID-19 outcomes were associated with older age (≥80 years vs 18–64 years adjusted RR 4·75, 95% CI 3·85–5·87), comorbidities (five or more risk groups vs less than five risk groups 4·24, 3·34–5·39), hospitalisation in the previous 4 weeks (3·00, 2·47–3·65), high-risk occupations (ten or more previous COVID-19 tests vs less than ten previous COVID-19 tests 2·14, 1·62–2·81), care home residence (1·63, 1·32–2·02), socioeconomic deprivation (most deprived quintile vs least deprived quintile 1·57, 1·30–1·90), being male (1·27, 1·13–1·43), and being an ex-smoker (ex-smoker vs non-smoker 1·18, 1·01–1·38). A history of COVID-19 before vaccination was protective (0·40, 0·29–0·54). Interpretation COVID-19 hospitalisations and deaths were uncommon 14 days or more after the first vaccine dose in this national analysis in the context of a high background incidence of SARS-CoV-2 infection and with extensive social distancing measures in place. Sociodemographic and clinical features known to increase the risk of severe disease in unvaccinated populations were also associa...
Objectives Following the outbreak of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus and the subsequent global spread of the 2019 novel coronavirus disease (COVID-19), health systems and the populations who use them have faced unprecedented challenges. We aimed to measure the impact of COVID-19 on the uptake of hospital-based care at a national level. Design The study period (weeks ending 5 January to 28 June 2020) encompassed the pandemic announcement by the World Health Organization and the initiation of the UK lockdown. We undertook an interrupted time-series analysis to evaluate the impact of these events on hospital services at a national level and across demographics, clinical specialties and National Health Service Health Boards. Setting Scotland, UK. Participants Patients receiving hospital care from National Health Service Scotland. Main outcome measures Accident and emergency (A&E) attendances, and emergency and planned hospital admissions measured using the relative change of weekly counts in 2020 to the averaged counts for equivalent weeks in 2018 and 2019. Results Before the pandemic announcement, the uptake of hospital care was largely consistent with historical levels. This was followed by sharp drops in all outcomes until UK lockdown, where activity began to steadily increase. This time-period saw an average reduction of −40.7% (95% confidence interval [CI]: −47.7 to −33.7) in A&E attendances, −25.8% (95% CI: −31.1 to −20.4) in emergency hospital admissions and −60.9% (95% CI: −66.1 to −55.7) in planned hospital admissions, in comparison to the 2018–2019 averages. All subgroup trends were broadly consistent within outcomes, but with notable variations across age groups, specialties and geography. Conclusions COVID-19 has had a profoundly disruptive impact on hospital-based care across National Health Service Scotland. This has likely led to an adverse effect on non-COVID-19-related illnesses, increasing the possibility of potentially avoidable morbidity and mortality. Further research is required to elucidate these impacts.
Background Mortality rates in hospitalised patients with COVID-19 in the UK appeared to decline during the first wave of the pandemic. We aimed to quantify potential drivers of this change and identify groups of patients who remain at high risk of dying in hospital. MethodsIn this multicentre prospective observational cohort study, the International Severe Acute Respiratory and Emerging Infections Consortium WHO Clinical Characterisation Protocol UK recruited a prospective cohort of patients with COVID-19 admitted to 247 acute hospitals in England, Scotland, and Wales during the first wave of the pandemic (between March 9 and Aug 2, 2020). We included all patients aged 18 years and older with clinical signs and symptoms of COVID-19 or confirmed COVID-19 (by RT-PCR test) from assumed community-acquired infection. We did a three-way decomposition mediation analysis using natural effects models to explore associations between week of admission and in-hospital mortality, adjusting for confounders (demographics, comorbidities, and severity of illness) and quantifying potential mediators (level of respiratory support and steroid treatment). The primary outcome was weekly in-hospital mortality at 28 days, defined as the proportion of patients who had died within 28 days of admission of all patients admitted in the observed week, and it was assessed in all patients with an outcome. This study is registered with the ISRCTN Registry, ISRCTN66726260. FindingsBetween March 9, and Aug 2, 2020, we recruited 80 713 patients, of whom 63 972 were eligible and included in the study. Unadjusted weekly in-hospital mortality declined from 32•3% (95% CI 31•8-32•7) in March 9 to April 26, 2020, to 16•4% (15•0-17•8) in June 15 to Aug 2, 2020. Reductions in mortality were observed in all age groups, in all ethnic groups, for both sexes, and in patients with and without comorbidities. After adjustment, there was a 32% reduction in the risk of mortality per 7-week period (odds ratio [OR] 0•68 [95% CI 0•65-0•71]). The higher proportions of patients with severe disease and comorbidities earlier in the first wave (March and April) than in June and July accounted for 10•2% of this reduction. The use of respiratory support changed during the first wave, with gradually increased use of non-invasive ventilation over the first wave. Changes in respiratory support and use of steroids accounted for 22•2%, OR 0•95 (0•94-0•95) of the reduction in in-hospital mortality.Interpretation The reduction in in-hospital mortality in patients with COVID-19 during the first wave in the UK was partly accounted for by changes in the case-mix and illness severity. A significant reduction in in-hospital mortality was associated with differences in respiratory support and critical care use, which could partly reflect accrual of clinical knowledge. The remaining improvement in in-hospital mortality is not explained by these factors, and could be associated with changes in community behaviour, inoculum dose, and hospital capacity strain.
Preterm birth (PTB) is the leading cause of infant mortality worldwide. Changes in PTB rates, ranging from −90% to +30%, were reported in many countries following early COVID-19 pandemic response measures (‘lockdowns’). It is unclear whether this variation reflects real differences in lockdown impacts, or perhaps differences in stillbirth rates and/or study designs. Here we present interrupted time series and meta-analyses using harmonized data from 52 million births in 26 countries, 18 of which had representative population-based data, with overall PTB rates ranging from 6% to 12% and stillbirth ranging from 2.5 to 10.5 per 1,000 births. We show small reductions in PTB in the first (odds ratio 0.96, 95% confidence interval 0.95–0.98, P value <0.0001), second (0.96, 0.92–0.99, 0.03) and third (0.97, 0.94–1.00, 0.09) months of lockdown, but not in the fourth month of lockdown (0.99, 0.96–1.01, 0.34), although there were some between-country differences after the first month. For high-income countries in this study, we did not observe an association between lockdown and stillbirths in the second (1.00, 0.88–1.14, 0.98), third (0.99, 0.88–1.12, 0.89) and fourth (1.01, 0.87–1.18, 0.86) months of lockdown, although we have imprecise estimates due to stillbirths being a relatively rare event. We did, however, find evidence of increased risk of stillbirth in the first month of lockdown in high-income countries (1.14, 1.02–1.29, 0.02) and, in Brazil, we found evidence for an association between lockdown and stillbirth in the second (1.09, 1.03–1.15, 0.002), third (1.10, 1.03–1.17, 0.003) and fourth (1.12, 1.05–1.19, <0.001) months of lockdown. With an estimated 14.8 million PTB annually worldwide, the modest reductions observed during early pandemic lockdowns translate into large numbers of PTB averted globally and warrant further research into causal pathways.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.