Slow motion movies allow us to see intricate details of the mechanical dynamics of complex phenomena. If the images in each frame are replaced by terahertz (THz) waves, such movies can monitor low-energy resonances and reveal fast structural or chemical transitions. Here, we combine THz spectroscopy as a non-invasive optical probe with a real-time monitoring technique to demonstrate the ability to resolve non-reproducible phenomena at 50k frames per second, extracting each of the generated THz waveforms every 20 μs. The concept, based on a photonic time-stretch technique to achieve unprecedented data acquisition speeds, is demonstrated by monitoring sub-millisecond dynamics of hot carriers injected in silicon by successive resonant pulses as a saturation density is established. Our experimental configuration will play a crucial role in revealing fast irreversible physical and chemical processes at THz frequencies with microsecond resolution to enable new applications in fundamental research as well as in industry.
We characterize the polarization properties of a supercontinuum (SC) generated in a GeO2-doped photonic crystal fiber (PCF) to reveal the interplay between nonlinear broadening mechanisms of a pulse propagating in two independent fundamental modes associated to the principal axes of the fiber. Notably, we resolve self-phase modulation, self-shifted Raman solitons and dispersive waves within a set of orthogonal polarization states as they contribute to generate a broad spectrum spanning from 450 to 2150 nm. Interestingly, our experimental results feature a high degree of polarization at the edges of the spectrum in comparison to the region near the pump wavelength. We show that this modulation is caused by nonlinear spectral broadening. We also identify an additional depolarization mechanism preferentially acting on shorter wavelengths, indicative of a Rayleigh-like scattering effect due to the presence of intrinsic sub-wavelength defects in the fiber. Experiments rely on a free-space grating-based monochromator and a broadband polarizer to monitor the output SC and its linear polarization components along the principal axes of the PCF. Our results and experimental technique pave the way toward an improved standard for the characterization of broadband optical spectra and more efficient implementation of highly nonlinear fibers in a large range of polarization-sensitive applications.
Speeding Up Ultrafast Spectroscopy A signal-processing algorithm called compressive sensing lets researchers characterize a sample with ultrafast spectroscopy using far fewer measurements than before.
We report coherent emission behavior of high-β metallic coaxial nanolasers under pulsed illumination conditions. Time-resolved photon statistical measurements show a transition from thermal to coherent emission within the envelope of the excitation pulse.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.