Genetic exchange as a mechanism underlying the extensive diversity of Leishmania parasites has not been shown. We report here evidence that the invertebrate stages of Leishmania are capable of a sexual cycle consistent with a meiotic process as described for African trypanosomes. Hybrid progeny were generated that bore full genomic complements from both parents, but kDNA maxicircles from one parent. Mating occurred only in the sand fly vector, and hybrids were transmitted to the mammalian host by sand fly bite. Genetic exchange likely contributes to phenotypic diversity in natural populations, and analysis of hybrid progeny will be useful for positional cloning of the genes controlling traits such as virulence, tissue tropism, and drug resistance.Parasitic protozoa of the genus Leishmania cause a spectrum of human diseases that pose serious public health challenges for prevention, diagnosis, and treatment. The diversity of Leishmania species, with over 20 currently recognized, is thought to have arisen by gradual accumulation of divergent mutations rather than by sexual recombination. Tibayrenc et al.
To identify parameters of Leishmania infection within a population of infected sand flies that reliably predict subsequent transmission to the mammalian host, we sampled groups of infected flies and compared infection intensity and degree of metacyclogenesis with the frequency of transmission. The percentage of parasites within the midgut that were metacyclic promastigotes had the highest correlation with the frequency of transmission. Meta-analysis of multiple transmission experiments allowed us to establish a percent-metacyclic “cutoff” value that predicted transmission competence. Sand fly infections initiated with variable doses of parasites resulted in correspondingly altered percentages of metacyclic promastigotes, resulting in altered transmission frequency and disease severity. Lastly, alteration of sand fly oviposition status and environmental conditions at the time of transmission also influenced transmission frequency. These observations have implications for transmission of Leishmania by the sand fly vector in both the laboratory and in nature, including how the number of organisms acquired by the sand fly from an infection reservoir may influence the clinical outcome of infection following transmission by bite.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.