In this study, we describe the antimycobacterial activity of two pigments, violacein, a purple violet pigment from Janthinobacterium sp. Ant5-2 (J-PVP), and flexirubin, a yellow-orange pigment from Flavobacterium sp. Ant342 (F-YOP). These pigments were isolated from bacterial strains found in the land-locked freshwater lakes of Schirmacher Oasis, East Antarctica. The minimum inhibitory concentrations (MICs) of these pigments for avirulent and virulent mycobacteria were determined by the microplate Alamar Blue Assay (MABA) and Nitrate Reductase Assay (NRA). Results indicated that the MICs of J-PVP and F-YOP were 8.6 and 3.6 μg/ml for avirulent Mycobacterium smegmatis mc²155; 5 and 2.6 μg/ml for avirulent Mycobacterium tuberculosis mc²6230; and 34.4 and 10.8 μg/ml for virulent M. tuberculosis H₃₇Rv, respectively. J-PVP exhibited a ~15 times lower MIC for Mycobacterium sp. than previously reported for violacein pigment from Chromobacterium violaceum, while the antimycobacterial effect of F-YOP remains undocumented. Our results indicate these pigments isolated from Antarctic bacteria might be valuable lead compounds for new antimycobacterial drugs used for chemotherapy of tuberculosis.
Two examples of fabric based frequency selective surfaces (FSSs) are presented. The FSSs are produced by using screen printing and weaving. Both measured and simulated data are presented showing excellent agreement and performance for the FSSs when compared with the simulated data. The performance of these samples points towards a useful screening technique using fabric hangings and wall coverings in a range of applications where temporary electromagnetic wave ingress or egress needs to be controlled. grant awarded to the authors by Loughborough University. Fig. 2a is reproduced courtesy of Matthew Broughton of the School of the Arts at Loughborough University.
This article has grown from a programme of practice-led research entitled 'Structural Textiles: Adaptable Form and Surface in Three-Dimensions'. In this research traditional textile craft practices centred on hand making have provided an essential foundation from which to develop deployable textile structures that have customizable behavioural properties. The article investigates the importance of touch in acquiring understanding of textile artefacts and the significance of this tactile acquisition of knowledge in the process of textile production. In such practice, innovation is generated through the maker's creative responses to unforeseen behaviours of both process and material. However, the research also has also drawn on CAD/CAM technologies that enable the creation of designs and products with increased accuracy and complexity but reduce or remove instances of handcrafting in the making process. The article considers how sensory information gained through touch and the embodied knowledge that this generates can be preserved as part of contemporary textile practice whilst exploiting the potential of CAD/CAM and other automated processes to create complex and innovative outcomes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.