Conventional physical therapy techniques have been shown to improve balance, mobility, and gait following neurological injury. Treatment involves training patients to transfer weight onto the impaired limb to improve weight shift while standing and walking. Visual biofeedback and force plate systems are often used for treatment of balance and mobility disorders. Researchers have also been exploring the use of video game consoles such as the Nintendo Wii Fit as rehabilitation tools. Case studies have demonstrated that the use of video games may have promise for balance rehabilitation. However, initial usability studies and anecdotal evidence suggest that the current commercial games are not compatible with controlled, specific exercise required to meet therapy goals. Based on focus group data and observations with patients, a game has been developed to specifically target weight shift training using an open source game engine and the Nintendo Wii Fit Balance Board. The prototype underwent initial usability testing with a sample of clinicians and with persons with neurological injury. Overall, feedback was positive, and areas for improvement were identified. This preliminary research provides support for the development of a game that caters specifically to the key requirements of balance rehabilitation.
In the past 2 decades, researchers have demonstrated the potential for virtual reality (VR) technologies to provide engaging and motivating environments for stroke rehabilitation interventions. Much of the research has been focused on the exploratory phase, and jumps to intervention efficacy trials and scale-up evaluation have been made with limited understanding of the active ingredients in a VR intervention for stroke. The rapid pace of technology development is an additional challenge for this emerging field, providing a moving target for researchers developing and evaluating potential VR technologies. Recent advances in customized games and cutting-edge technology used for VR are beginning to allow for researchers to understand and control aspects of the intervention related to motivation, engagement, and motor control and learning. This article argues for researchers to take a progressive, step-wise approach through the stages of intervention development using evidence-based principles, take advantage of the data that can be obtained, and utilize measurement tools to design effective VR interventions for stroke rehabilitation that can be assessed through carefully designed efficacy and effectiveness trials. This article is motivated by the recent calls in the field of rehabilitation clinical trials research for carefully structured clinical trials that have progressed through the phases of research.
Summary Background Integrating behavioral intervention into motor rehabilitation is essential for improving paretic arm use in daily life. Demands on therapist time limit adoption of behavioral programs like Constraint-Induced Movement (CI) therapy, however. Self-managed motor practice could free therapist time for behavioral intervention, but there remains insufficient evidence of efficacy for a self-management approach. Methods This completed, parallel, five-site, pragmatic, single-blind trial established the comparative effectiveness of using in-home gaming self-management as a vehicle to redirect valuable therapist time towards behavioral intervention. Community-dwelling adults with post-stroke (>6 months) mild/moderate upper extremity hemiparesis were randomized to receive one of 4 different interventions over a 3-week period: 5 h of behaviorally-focused intervention plus gaming self-management (Self-Gaming), the same with additional behaviorally-focused telerehabilitation (Tele-Gaming), 5 h of Traditional motor-focused rehabilitation, or 35 h of CI therapy. Primary outcomes assessed everyday arm use (Motor Activity Log Quality of Movement, MAL) and motor speed/function (Wolf Motor Function Test, WMFT) immediately before treatment, immediately after treatment, and 6 months later. Intent-to-treat analyses were implemented with linear mixed-effects models on data gathered from March 15, 2016 to November 21, 2019. ClinicalTrials.gov, NCT02631850. Results Of 193 enrolled participants, 167 began treatment and were analyzed, 150 (90%) completed treatment, and 115 (69%) completed follow-up. Tele-Gaming and Self-Gaming produced clinically meaningful MAL gains that were 1·0 points (95% CI 0·8 to 1·3) and 0·8 points (95% CI 0·5 to 1·0) larger than Traditional care, respectively. Self-Gaming was less effective than CI therapy (-0·4 points, 95% CI -0·6 to -0·2), whereas Tele-Gaming was not (-0·2 points, 95% CI -0·4 to 0·1). Six-month retention of MAL gains across all groups was 57%. All had similar clinically-meaningful WMFT gains; six-month retention of WMFT gains was 92%. Interpretation Self-managed motor-gaming with behavioral telehealth visits has outcomes similar to in-clinic CI therapy. It addresses most access barriers, requiring just one-fifth as much therapist time that is redirected towards behavioral interventions that enhance the paretic arm's involvement in daily life. Funding , NIH
The objective of this study was to determine the feasibility of a 6-week, game-based, in-home telerehabilitation exercise program using the Microsoft Kinect® for individuals with chronic stroke. Four participants with chronic stroke completed the intervention based on games designed with the customized Mystic Isle software. The games were tailored to each participant’s specific rehabilitation needs to facilitate the attainment of individualized goals determined through the Canadian Occupational Performance Measure. Likert scale questionnaires assessed the feasibility and utility of the game-based intervention. Supplementary clinical outcome data were collected. All participants played the games with moderately high enjoyment. Participant feedback helped identify barriers to use (especially, limited free time) and possible improvements. An in-home, customized, virtual reality game intervention to provide rehabilitative exercises for persons with chronic stroke is practicable. However, future studies are necessary to determine the intervention’s impact on participant function, activity, and involvement.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.