The brain transcriptional profile of MDD differs greatly by sex, with multiple transcriptional changes in opposite directions between men and women with MDD.
The A allele of the FRAS1-related extracellular matrix protein 3 (FREM3) rs7676614 single nucleotide polymorphism (SNP) was linked to major depressive disorder (MDD) in an early genome-wide association study (GWAS), and to symptoms of psychomotor retardation in a follow-up investigation. In line with significant overlap between age- and depression-related molecular pathways, parallel work has shown that FREM3 expression in postmortem human brain decreases with age. Here, we probe the effect of rs7676614 on amygdala reactivity and perceptual processing speed, both of which are altered in depression and aging. Amygdala reactivity was assessed using a face-matching BOLD fMRI paradigm in 365 Caucasian participants in the Duke Neurogenetics Study (DNS) (192 women, mean age 19.7 ± 1.2). Perceptual processing speed was indexed by reaction times in the same task and the Trail Making Test (TMT). The effect of rs7676614 on FREM3 mRNA brain expression levels was probed in a postmortem cohort of 169 Caucasian individuals (44 women, mean age 50.8 ± 14.9). The A allele of rs7676614 was associated with blunted amygdala reactivity to faces, slower reaction times in the face-matching condition (p < 0.04), as well as marginally slower performance on TMT Part B (p = 0.056). In the postmortem cohort, the T allele of rs6537170 (proxy for the rs7676614 A allele), was associated with trend-level reductions in gene expression in Brodmann areas 11 and 47 (p = 0.066), reminiscent of patterns characteristic of older age. The low-expressing allele of another FREM3 SNP (rs1391187) was similarly associated with reduced amygdala reactivity and slower TMT Part B speed, in addition to reduced BA47 activity and extraversion (p < 0.05). Together, these results suggest common genetic variation associated with reduced FREM3 expression may confer risk for a subtype of depression characterized by reduced reactivity to environmental stimuli and slower perceptual processing speed, possibly suggestive of accelerated aging.
Women are approximately two times as likely to be diagnosed with major depressive disorder (MDD) compared to men. While sex differences in MDD might be driven by circulating gonadal hormones, we hypothesized that developmental hormone exposure and/or genetic sex might play a role. Mice were gonadectomized in adulthood to isolate the role of developmental hormones. We examined the effects of developmental gonadal and genetic sex on anhedonia-/depressive-like behaviors under non-stress and chronic stress conditions and performed RNA-sequencing in three mood-relevant brain regions. We used an integrative network approach to identify transcriptional modules and stress-specific hub genes regulating stress susceptibility, with a focus on whether these differed by sex. After identifying sex differences in anhedonia-/depressive-like behaviors (female > male), we show that both developmental hormone exposure (gonadal female > gonadal male) and genetic sex (XX > XY) contribute to the sex difference. The top biological pathways represented by differentially expressed genes were related to immune function; we identify which differentially expressed genes are driven by developmental gonadal or genetic sex. There was very little overlap in genes affected by chronic stress in males and females. We also identified highly co-expressed gene modules affected by stress, some of which were affected in opposite directions in males and females. Since all mice had equivalent hormone exposure in adulthood, these results suggest that sex differences in gonadal hormone exposure during sensitive developmental periods program adult sex differences in mood, and that these sex differences are independent of adult circulating gonadal hormones.
BackgroundWomen are twice as likely to be diagnosed with major depressive disorder (MDD) compared to men, but the molecular mechanisms underlying this sex difference are unclear. Previous studies in the human postmortem brain suggest dysfunction in basolateral amygdala (BLA) inhibitory gamma-aminobutyric acid (GABA) signaling and brain-derived neurotrophic factor (BDNF) function, specifically in females with MDD.MethodsWe investigated the effects of sex chromosome complement, developmental gonadal sex, and circulating testosterone on expression of 3 GABA-related and 2 BDNF-related genes in the BLA using three cohorts of four core genotypes (FCG) mice. Cohort 1 included gonadally intact pre-pubertal FCG mice; results were analyzed using two-way ANOVA (sex chromosome complement-by-gonadal sex). We examined the same genes under adult non-stressed (cohort 2) and chronically stressed conditions (cohort 3). The results for cohorts 2 and 3 were analyzed by three-way ANOVA (sex chromosome complement-by-gonadal sex-by-hormone). The use of heatmaps and Spearman correlation of BLA gene expression and anxiety-like behavior provides a global interpretation of gene expression patterns.ResultsIn weanlings, we found an effect of sex chromosome complement, with lower expression of GABA/BDNF-related genes in XY mice. Most of these effects did not persist into adulthood, although a number of interesting interactions between organizational and activational effects of hormones emerged. In our adult cohorts, we found that testosterone had different effects depending on stress conditions and/or gonadal sex. Notably, in our chronically stressed adults, we found that the BLA pattern of gene expression for the GABA-related gene, somatostatin (Sst), matched the anxiety-like behavior pattern (i.e., lower Sst and higher anxiety-like behavior in XY mice, while testosterone increased Sst and decreased anxiety-like behavior). Additionally, increased Sst gene expression was correlated with decreased anxiety-like behavior.ConclusionsSex chromosome complement is an important factor modulating expression of mood-related genes during pre-pubertal development. The observed sex differences under chronically stressed conditions suggest that different molecular profiles may characterize male and female MDD. Our findings here for Sst are especially interesting, and suggest an underlying XY vulnerability that is typically compensated for by circulating testosterone in “normal” males. Without testosterone, women may have lower SST expression in the amygdala, resulting in increased MDD vulnerability.
Psychiatric disorders are associated with accelerated aging and enhanced risk for neurodegenerative disorders. Brain aging is associated with molecular, cellular and structural changes that are robust on the group-level, yet show substantial inter-individual variability. Here we assessed deviations in gene expression from normal age-dependent trajectories, and tested their validity as predictors of risk for major mental illnesses and neurodegenerative disorders. We performed large-scale gene expression and genotype analyses in postmortem samples of two frontal cortical brain regions from 214 control subjects aged 20–90 years. Individual estimates of “molecular age” were derived from age-dependent genes, identified by robust regression analysis. Deviation from chronological age was defined as “delta age”. Genetic variants associated with deviations from normal gene expression patterns were identified by expression quantitative trait loci (cis-eQTL) of age-dependent genes or genome-wide association study (GWAS) on delta age, combined into distinct polygenic risk scores (PRS cis-eQTL and PRS GWAS ), and tested for predicting brain disorders or pathology in independent postmortem expression datasets and clinical cohorts. In these validation datasets, molecular ages, defined by 68 and 76 age-related genes for two brain regions respectively, were positively correlated with chronological ages (r=0.88/0.91), elevated in bipolar disorder (BP) and schizophrenia (SCZ), and unchanged in major depressive disorder (MDD). Exploratory analyses in independent clinical datasets show that PRSs were associated with SCZ and MDD diagnostics, and with cognition in SCZ and pathology in Alzheimer’s disease (AD). These results suggest that older molecular brain aging is a common feature of severe mental illnesses and neurodegeneration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.