Survanta is a replacement lung surfactant (LS) used in the treatment of respiratory distress syndrome (RDS), the fourth leading cause of infant mortality in the United States. It consists of purified LS from bovine sources and retains the surfactant proteins (SP) SP‐B and SP‐C, both thought to be important in proper respiratory function. As such, it provides a useful and biologically relevant model system to probe the structure and function of natural LS. Here, we report results from high‐resolution studies on model monolayers formed from Survanta to probe the mechanism of collapse at high surface pressure. Our results show the formation of two different collapse structures. At 62 mN/m, slightly below the collapse pressure, monolayer collapse occurs through buckling. Confocal fluorescence measurements on supported films reveal regions of overlapping phase structure in the films that mark the transition from monolayer to multilayer. Simultaneous near‐field scanning optical microscopy fluorescence and force measurements show that the transition seen in the fluorescence measurements accompanies corresponding ∼4–5 nm changes in membrane topography. This change in height is consistent with bilayer formation on monolayer collapse. Analysis of the phase structure near the transitions also suggests that the buckling occurs from a continuous film. However, when the film is compressed to its collapse pressure of 65 mN/m, buckling is no longer evident in the collapsed region. In addition, multilayers and lipid‐protein aggregates that are up to 40 nm higher than the monolayer are observed in the collapsed film at this pressure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.