Objective-Orthopedic injury and intracranial hemorrhage are commonly encountered in emergency radiology, and accurate and timely diagnosis is important. The purpose of this study was to determine whether the diagnostic accuracy of handheld computing devices is comparable to that of monitors that might be used in emergency teleconsultation.Materials and Methods-Two handheld devices, a Dell Axim personal digital assistant (PDA) and an Apple iPod Touch device, were studied. The diagnostic efficacy of each device was tested against that of secondary-class monitors (primary class being clinical workstation display) for each of two image types-posteroanterior wrist radiographs and slices from CT of the brain-yielding four separate observer performance studies. Participants read a bank of 30 wrist or brain images searching for a specific abnormality (distal radial fracture, fresh intracranial bleed) and rated their confidence in their decisions. A total of 168 readings by examining radiologists of the American Board of Radiology were gathered, and the results were subjected to receiver operating characteristics analysis.Results-In the PDA -CT brain study, the scores from PDA readings were significantly higher than those from the monitor readings for all observers (p≤0.01) and for radiologists who were not neuroradiology specialists (p≤0.05). No statistically significant differences were noted for the wrist images or in the iPod Touch studies, although some comparisons approached significance.Conclusion-Handheld devices show promise in the field of emergency teleconsultation for detection of basic orthopaedic injuries and intracranial haemorrhage, although further investigation is warranted.
Respiration-related movement of organs is a complication in a range of diagnostic and interventional procedures. The development and validation of techniques to compensate for such movement requires appropriate models. Human cadavers embalmed with the Thiel method remain flexible and could provide a suitable model. In this study liver displacement during ventilation was assessed in eight Thiel embalmed cadavers, all of which showed thoracic and abdominal motion. Four cadavers displayed realistic lung behaviour, one showed some signs of pneumothorax after prolonged ventilation, one had limited filling of the lungs, and two displayed significant leakage of air into the thorax. A coronal slice containing the largest section through the liver was imaged with a real-time Fast Gradient Echo (FGR) MRI sequence: Craniocaudal displacement of the liver was then determined from a time-series of slices. The maximum liver displacement observed in the cadavers ranged from 7 to 35 mm. The ventilation applied was comparable to tidal breathing at rest and the results found for liver displacement are similar to values in the literature for respiratory motion of the liver under similar conditions. This indicates that Thiel embalmed cadavers have potential as a model for research and training in minimally invasive procedures.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.