Radiation is commonly used in cancer treatment. Over 50% of all cancer patients will undergo radiotherapy (RT) as part of cancer care. Scientific advances in RT have primarily focused on the physical characteristics of treatment including beam quality and delivery. Only recently have inroads been made into utilizing tumor biology and radiobiology to design more appropriate RT protocols. Tumors are composites of proliferating and growth-arrested cells, and overall response depends on their respective proportions at irradiation. Prokopiou et al. (Radiat Oncol 10:159, 2015) developed the concept of the proliferation saturation index (PSI) to augment the clinical decision process associated with RT. This framework is based on the application of the logistic equation to pre-treatment imaging data in order to estimate a patient-specific tumor carrying capacity, which is then used to recommend a specific RT protocol. It is unclear, however, how dependent clinical recommendations are on the underlying tumor growth law. We discuss a PSI framework with a generalized logistic equation that can capture kinetics of different well-known growth laws including logistic and Gompertzian growth. Estimation of model parameters on the basis of clinical data revealed that the generalized logistic model can describe data equally well for a wide range of the generalized logistic exponent value. Clinical recommendations based on the calculated PSI, however, are strongly dependent on the specific growth law assumed. Our analysis suggests that the PSI framework may best be utilized in clinical practice when the underlying tumor growth law is known, or when sufficiently many tumor growth models suggest similar fractionation protocols.
Complex interactions occur between tumor and host immune system at each site in the metastatic setting, the outcome of which can determine behavior ranging from dormancy to rapid growth. An additional layer of complexity arises from the understanding that cytotoxic T cells can traffic through the host circulatory system. Coupling mathematical models of local tumor-immune dynamics and systemic T cell trafficking allows us to simulate the evolution of tumor and immune cell populations in anatomically distant sites following local therapy and thus computationally evaluate immune interconnectivity. Results suggest that the presence of a secondary site may either inhibit or promote growth of the primary, depending on the capacity for immune recruitment of each tumor and the resulting systemic redistribution of T cells. Treatment such as surgical resection and radiotherapy can be simulated to estimate both the decrease in tumor volume at the local treatment-targeted site, and the change in overall tumor burden and tumor growth trajectories across all sites. Qualitatively similar responses of distant tumors to local therapy (positive and negative abscopal effects) to those reported in the clinical setting were observed. Such findings may facilitate an improved understanding of general disease kinetics in the metastatic setting: if metastatic sites are interconnected through the immune system, truly local therapy does not exist.
To allow innovative, progressive treatments to make the transition from concept to clinic, experimentally calibrated and clinically motivated mathematical models are essential. To aid the development of well-informed clinical trials, collaboration between mathematicians, computational modelers, biologists, and clinicians is required to allow qualitative hypotheses to take on a quantitative dimension. Such interdisciplinary science can allow both personalization and optimization of dose and scheduling of immunotherapeutic protocols, both as an independent therapy and in conjunction with other more traditional therapies, to streamline the transition from innovative concept to clinical practice and improve clinical outcomes for individual patients.
After decades of research, oncolytic virotherapy has recently advanced to clinical application, and currently a multitude of novel agents and combination treatments are being evaluated for cancer therapy. Oncolytic agents preferentially replicate in tumor cells, inducing tumor cell lysis and complex antitumor effects, such as innate and adaptive immune responses and the destruction of tumor vasculature. With the availability of different vector platforms and the potential of both genetic engineering and combination regimens to enhance particular aspects of safety and efficacy, the identification of optimal treatments for patient subpopulations or even individual patients becomes a top priority. Mathematical modeling can provide support in this arena by making use of experimental and clinical data to generate hypotheses about the mechanisms underlying complex biology and, ultimately, predict optimal treatment protocols. Increasingly complex models can be applied to account for therapeutically relevant parameters such as components of the immune system. In this review, we describe current developments in oncolytic virotherapy and mathematical modeling to discuss the benefit of integrating different modeling approaches into biological and clinical experimentation. Conclusively, we propose a mutual combination of these research fields to increase the value of the preclinical development and the therapeutic efficacy of the resulting treatments.
PURPOSE Early-stage cancers are routinely treated with surgery followed by radiotherapy (SR). Radiotherapy before surgery (RS) has been widely ignored for some cancers. We evaluate overall survival (OS) and disease-free survival (DFS) with SR and RS for different cancer types and simulate the plausibility of RS- and SR-induced antitumor immunity contributing to outcomes. MATERIALS AND METHODS We analyzed a SEER data set of early-stage cancers treated with SR or RS. OS and DFS were calculated for cancers with sufficient numbers for statistical power (cancers of lung and bronchus, esophagus, rectum, cervix uteri, corpus uteri, and breast). We simulated the immunologic consequences of SR, RS, and radiotherapy alone in a mathematical model of tumor-immune interactions. RESULTS RS improved OS for cancers with low 20-year survival rates (lung: hazard ratio [HR], 0.88; P = .046) and improved DFS for cancers with higher survival (breast: HR = 0.64; P < .001). For rectal cancer, with intermediate 20-year survival, RS improved both OS (HR = 0.89; P = .006) and DFS (HR = 0.86; P = .04). Model simulations suggested that RS could increase OS by eliminating cancer for a broader range of model parameters and radiotherapy-induced antitumor immunity compared with SR for selected parameter combinations. This could create an immune memory that may explain increased DFS after RS for certain cancers. CONCLUSION Study results suggest plausibility that radiation to the bulk of the tumor could induce a more robust immune response and better harness the synergy of radiotherapy and antitumor immunity than postsurgical radiation to the tumor bed. This exploratory study provides motivation for prospective evaluation of immune activation of RS versus SR in controlled clinical studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.