A novel innate immune strategy, involving specific cholesterol oxidation products as effectors, has begun to reveal connections between cholesterol metabolism and immune response against viral infections. Indeed, 25-hydroxycholesterol (25HC) and 27-hydroxycholesterol (27HC), physiologically produced by enzymatic oxidation of cholesterol, act as inhibitors of a wide spectrum of enveloped and non-enveloped human viruses. However, the mechanisms underlying their protective effects against non-enveloped viruses are almost completely unexplored. To get insight into this field, we investigated the antiviral activity of 25HC and 27HC against a non-enveloped virus causing acute gastroenteritis in children, the human rotavirus (HRV). We found that 25HC and 27HC block the infectivity of several HRV strains at 50% inhibitory concentrations in the low micromolar range in the absence of cell toxicity. Both molecules affect the final step of virus penetration into cells by preventing the association of two cellular proteins: the oxysterol binding protein (OSBP) and the vesicle-associated membrane protein-associated protein-A (VAP-A). By altering the activity of these cellular mediators, 25HC and 27HC disturb the recycling of cholesterol between the endoplasmic reticulum and the late endosomes which are exploited by HRV to penetrate into the cell. The substantial accumulation of cholesterol in the late endosomal compartment results in sequestering viral particles inside these vesicles thereby preventing cytoplasmic virus replication. These findings suggest that cholesterol oxidation products of enzymatic origin might be primary effectors of host restriction strategies to counteract HRV infection and point to redox active lipids involvement in viral infections as a research area of focus to better focus in order to identify novel antiviral agents targets.
The widespread of viral airborne diseases is becoming a critical problem for human health and safety, not only for the common cold and flu, but also considering more serious infection as the current pandemic COVID-19. Even if the current heating, ventilating and air conditioning (HVAC) systems limit the disease transmission by air, the air filters are susceptible to microbial colonization. In addition, viruses spread via droplets (aerosol) produced by direct or indirect contact with infected people. In this context, the necessity of an efficient HVAC system, able to capture and inactivate viruses- and bacteria-rich aerosols, thus preserving a safe indoor air environment and protecting people, is of enormous importance. The aim of this work is the assessment of the antiviral properties of a silver nanoclusters/silica composite coating deposited via co-sputtering technique on glass, on metallic fibre-based air filters as well as on cotton textiles. The selected human respiratory viruses are: respiratory syncytial virus (RSV), the human rhinovirus (HRV) and the influenza virus type A (FluVA). The coated air filters show that the nanostructured coating develops a strong virucidal activity against RSV and FluVA, but not against the HRV.
Zika virus, an arthropod-borne flavivirus, is an emerging healthcare threat worldwide. Zika virus is responsible for severe neurological effects, such as paralytic Guillain-Barrè syndrome, in adults, and also congenital malformations, especially microcephaly. No specific antiviral drugs and vaccines are currently available, and treatments are palliative, but medicinal plants show great potential as natural sources of anti-Zika phytochemicals. This study deals with the investigation of the composition, cytotoxicity, and anti-Zika activity of Punica granatum leaf ethanolic extract, fractions, and phytoconstituents. P. granatum leaves were collected from different areas in Italy and Greece in different seasons. Crude extracts were analyzed and fractionated, and the pure compounds were isolated. The phytochemical and biomolecular fingerprint of the pomegranate leaves was determined. The antiviral activities of the leaf extract, fractions, and compounds were investigated against the MR766 and HPF2013 Zika virus strains in vitro. Both the extract and its fractions were found to be active against Zika virus infection. Of the compounds isolated, ellagic acid showed particular anti-Zika activities, with EC50 values of 30.86 µM for MR766 and 46.23 µM for HPF2013. The mechanism of action was investigated using specific antiviral assays, and it was demonstrated that ellagic acid was primarily active as it prevented Zika virus infection and was able to significantly reduce Zika virus progeny production. Our data demonstrate the anti-Zika activity of pomegranate leaf extract and ellagic acid for the first time. These findings identify ellagic acid as a possible anti-Zika candidate compound that can be used for preventive and therapeutic interventions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.