Pentraxins are a superfamily of conserved proteins that are characterized by a cyclic multimeric structure. The classical short pentraxins, C-reactive protein (CRP) and serum amyloid P component (SAP), are acute-phase proteins produced in the liver in response to inflammatory mediators. Short pentraxins regulate innate resistance to microbes and the scavenging of cellular debris and extracellular matrix components. In contrast, long pentraxins have an unrelated, long amino-terminal domain coupled to the carboxy-terminal pentraxin domain, and differ, with respect to short pentraxins, in their gene organization, chromosomal localization, cellular source, and in their stimuli-inducing and ligand-recognition ability. To investigate the in vivo function of the long pentraxin PTX3, we generated mice deficient in Ptx3 by homologous recombination. Ptx3-null mice were susceptible to invasive pulmonary aspergillosis. Ptx3 binds selected microbial agents, including conidia of Aspergillus fumigatus, and we found that susceptibility of Ptx3-null mice was associated with defective recognition of conidia by alveolar macrophages and dendritic cells, as well as inappropriate induction of an adaptive type 2 response. Thus, the long pentraxin Ptx3 is a secreted pattern-recognition receptor that has a non-redundant role in resistance to selected microbial agents, in particular to the opportunistic fungal pathogen Aspergillus fumigatus.
Rituximab is an anti-CD20 chimeric mAb effective for the treatment of B-NHL. It can lyse lymphoma cells in vitro through both C- and Ab-dependent cellular cytotoxicity. The mechanism of action of rituximab in vivo is however still unclear. We have set up a new in vivo model in nonimmunodeficient mice by stable transduction of the human CD20 cDNA in the murine lymphoma line EL4. Animals injected i.v. with the EL4-CD20+ lymphoma cells died within 30 days with evident liver, spleen, and bone marrow involvement, confirmed by immunohistochemistry and PCR analysis. A single injection of rituximab or the murine anti-CD20 Ab 1F5, given i.p. 1 day after the tumor, cured 100% of the animals. Indeed, at week 4 after tumor cell inoculation, CD20+ cells were undetectable in all organs analyzed in rituximab-treated animals, as determined by immunohistochemistry and PCR. Rituximab had no direct effect on tumor growth in vitro. Depletion of either NK cells or neutrophils or both in tumor-injected animals did not affect the therapeutic activity of the drug. Similarly, rituximab was able to eradicate tumor cells in athymic nude mice, suggesting that its activity is T cell independent. In contrast, the protective activity of rituximab or the 1F5 Ab was completely abolished in syngeneic knockout animals lacking C1q, the first component of the classical pathway of C (C1qa−/−). These data demonstrate that C activation is fundamental for rituximab therapeutic activity in vivo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.