Mitochondrial genomes (mitogenomes) in higher plants can induce cytoplasmic male sterility and be somehow involved in nuclear-cytoplasmic interactions affecting plant growth and agronomic performance. They are larger and more complex than in other eukaryotes, due to their recombinogenic nature. For most plants, the mitochondrial DNA (mtDNA) can be represented as a single circular chromosome, the so-called master molecule, which includes repeated sequences that recombine frequently, generating sub-genomic molecules in various proportions. Based on the relevance of the potato crop worldwide, herewith we report the complete mtDNA sequence of two S. tuberosum cultivars, namely Cicero and Désirée, and a comprehensive study of its expression, based on high-coverage RNA sequencing data. We found that the potato mitogenome has a multi-partite architecture, divided in at least three independent molecules that according to our data should behave as autonomous chromosomes. Inter-cultivar variability was null, while comparative analyses with other species of the Solanaceae family allowed the investigation of the evolutionary history of their mitogenomes. The RNA-seq data revealed peculiarities in transcriptional and post-transcriptional processing of mRNAs. These included co-transcription of genes with open reading frames that are probably expressed, methylation of an rRNA at a position that should impact translation efficiency and extensive RNA editing, with a high proportion of partial editing implying frequent mis-targeting by the editing machinery.
BackgroundDrought is a major constraint for plant growth and crop productivity that is receiving an increased attention due to global climate changes. Chloroplasts act as environmental sensors, however, only partial information is available on stress-induced mechanisms within plastids. Here, we investigated the chloroplast response to a severe drought treatment and a subsequent recovery cycle in tomato through physiological, metabolite and proteomic analyses.ResultsUnder stress conditions, tomato plants showed stunted growth, and elevated levels of proline, abscisic acid (ABA) and late embryogenesis abundant gene transcript. Proteomics revealed that water deficit deeply affects chloroplast protein repertoire (31 differentially represented components), mainly involving energy-related functional species. Following the rewatering cycle, physiological parameters and metabolite levels indicated a recovery of tomato plant functions, while proteomics revealed a still ongoing adjustment of the chloroplast protein repertoire, which was even wider than during the drought phase (54 components differentially represented). Changes in gene expression of candidate genes and accumulation of ABA suggested the activation under stress of a specific chloroplast-to-nucleus (retrograde) signaling pathway and interconnection with the ABA-dependent network.ConclusionsOur results give an original overview on the role of chloroplast as enviromental sensor by both coordinating the expression of nuclear-encoded plastid-localised proteins and mediating plant stress response. Although our data suggest the activation of a specific retrograde signaling pathway and interconnection with ABA signaling network in tomato, the involvement and fine regulation of such pathway need to be further investigated through the development and characterization of ad hoc designed plant mutants.Electronic supplementary materialThe online version of this article (doi:10.1186/s12870-017-0971-0) contains supplementary material, which is available to authorized users.
BackgroundBiofuels production from plant biomasses is a complex multi-step process with important economic burdens. Several biotechnological approaches have been pursued to reduce biofuels production costs. The aim of the present study was to explore the production in tobacco plastome of three genes encoding (hemi)cellulolytic enzymes from thermophilic and hyperthermophilic bacterium and Archaea, respectively, and test their application in the bioconversion of an important industrially pretreated biomass feedstock (A. donax) for production of second-generation biofuels.ResultsThe selected enzymes, endoglucanase, endo-β-1,4-xylanase and β-glucosidase, were expressed in tobacco plastome with a protein yield range from 2 % to more than 75 % of total soluble proteins (TSP). The accumulation of endoglucanase (up to 2 % TSP) gave altered plant phenotypes whose severity was directly linked to the enzyme yield. The most severe seedling-lethal phenotype was due to the impairment of plastid development associated to the binding of endoglucanase protein to thylakoids. Endo-β-1,4-xylanase and β-glucosidase, produced at very high level without detrimental effects on plant development, were enriched (fourfold) by heat treatment (105.4 and 255.4 U/mg, respectively). Both plastid-derived biocatalysts retained the main features of the native or recombinantly expressed enzymes with interesting differences. Plastid-derived xylanase and β-glucosidase resulted more thermophilic than the E. coli recombinant and native counterpart, respectively. Bioconversion experiments, carried out at 50 and 60 °C, demonstrated that plastid-derived enzymes were able to hydrolyse an industrially pretreated giant reed biomass. In particular, the replacement of commercial enzyme with plastid-derived xylanase, at 60 °C, produced an increase of both xylose recovery and hydrolysis rate; whereas the replacement of both xylanase and β-glucosidase produced glucose levels similar to those observed with the commercial cocktails, and xylose yields always higher in the whole 24–72 h range.ConclusionsThe very high production level of thermophilic and hyperthermophilic enzymes, their stability and bioconversion efficiencies described in this study demonstrate that plastid transformation represents a real cost-effective production platform for cellulolytic enzymes.Electronic supplementary materialThe online version of this article (doi:10.1186/s13068-016-0569-z) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.