Thermal comfort of drivers and passengers inside cars compartments is a subject bouncing back to the spotlight with the electrification of vehicles. In fact, air conditioning and heating systems can reduce the battery autonomy of electric vehicles by up to 50% under certain conditions. On the other hand, although some researchers attempted to consider the individualization of thermal sensation and comfort models, the most used thermal sensation and comfort models nowadays are still those that consider a standard average person. Many studies showed the limitations of these models in predicting thermal comfort for different populations in complex environments. Therefore, if a personal thermal comfort at minimum vehicle energy consumption is required, a deep consideration should be given to the understanding of the individualization of the thermophysiological model and to identifying key parameters that have the most influence on thermal comfort. In order to evaluate the impact of different parameters on thermal sensation and comfort, a literature review was undertaken followed by a sensitivity analysis of some potentially influential parameters such as the basal metabolic rate, body weight, cardiac output, body fat content and clothing by considering the influence of their variations on thermal neutrality status and thermal sensation and comfort.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.