IntroductionDuring the coronavirus disease 2019 (COVID-19) pandemic, vitamin D has been established as an immune-modulator that reduces pro-inflammatory damage which effectively diminish the severity of COVID-19. Vitamin D also has a significant effect against influenza and dengue and increase the seroconversion following influenza vaccination. To date, the role of vitamin D in optimizing the efficacy of COVID-19 vaccines remains unclear. This study aimed to analyze the correlation between serum 25-hydroxy-cholecalciferol or 25(OH)D levels and anti-SARS-CoV-2 S-RBD IgG and neutralizing antibody levels among cancer patients.MethodologyA multicenter cross-sectional study was conducted among solid and hematologic cancer patients who were vaccinated with two doses of the same types of COVID-19 vaccines (either mRNA, non-replicating viral vector, or inactivated) within 6 months.ResultThe median serum 25(OH)D level in 119 cancer patients was 36.36 [IQR = 30.30] ng/mL. The seropositivity of S-RBD IgG and NAb reached 93.3 and 94.1%, respectively. The S-RBD IgG level was significantly higher in the sufficient group (median = 414.07 [1,441.83] AU/mL) than in the deficient group (median = 91.56 [652.00] AU/mL) (p-value = 0.049). Among non-chemotherapy subjects, the anti-SARS-CoV-2 S-RBD IgG levels had a significant positive correlation with 25(OH)D levels (p-value = 0.03; R = 0.588). The NAb levels also showed significantly positive correlation with 25(OH)D level (p-value = 0.005; R = 0.561). The 25(OH)D levels were positively correlated with S-RBD IgG levels among subjects younger than 60 years old (p-value = 0.047; R = 0.136). However, serum 25 (OH)D levels showed no such correlation with S-RBD IgG levels among subjects older than 60 years old (p-value = 0.933; R = 0.136).ConclusionBoth anti-SARS-CoV-2 S-RBD IgG and NAb levels developed moderate correlation with 25(OH)D levels among subjects treated without chemotherapy. The S-RBD IgG levels also had positive correlation with 25(OH)D levels among subjects younger than 60 years old. Thus, we recommended cancer patients to maintain serum 25(OH)D levels above 30 ng/mL (75 nmol/L) to enhance the efficacy of COVID-19 vaccines.
Background Cancer patients have an increased risk of a severe COVID-19 infection with higher mortality rate. This study aimed to analyze the levels of anti-SARS-CoV-2 S-RBD IgG and NAB among cancer patients who were vaccinated with COVID-19 vaccines, either with BNT162b2, mRNA-1273, AZD1222/ChAdOx1nCoV-19, or Coronavac/BBIBP-CorV vaccines. Method A cross-sectional study was conducted among subjects with either solid or hematological cancers who had received two doses of either mRNA or non-mRNA vaccines within 6 months. The levels of anti-SARS-CoV-2 S-RBD IgG and NAb were analyzed using the Mindray Immunoassay Analyzer CL-900i. Statistical analysis was conducted using mean comparison and regression analysis. Result The mRNA-1273 vaccine had the highest median levels of S-RBD IgG and NAb, followed by BNT162b, ChAdOx1nCoV-19, and BBIBP-CorV/Coronavac. The levels of S-RBD IgG and NAb in subjects vaccinated with mRNA vaccines were significantly higher than those of non-mRNA vaccines when grouped based on their characteristics, including age, type of cancer, chemotherapy regimen, and comorbidity (p<0.05). Furthermore, the S-RBD IgG and NAb levels between the subjects vaccinated with non-mRNA vaccines and the subjects vaccinated with mRNA vaccines were significantly different (p<0.05). However, there was no significant difference between the same types of vaccines. This study demonstrated a very strong correlation between the level of S-RBD IgG and the level of NAb (R = 0.962; p<0.001). The level of anti-SARS-CoV-2 S-RBD IgG was consistently higher compared to the level of NAb. Conclusions Generally, mRNA vaccines produced significantly higher anti-SARS-CoV-2 S-RBD IgG and NAb levels than non-mRNA vaccines in cancer subjects.
<b>Background</b>: In the era of coronavirus disease 2019 (COVID-19), it is mandatory to identify vulnerable people with cancers as they have impaired immune system that can lead to high mortality. This study analyzes the complete blood count (CBC) derived inflammatory biomarkers and the level of anti-SARS-CoV-2 neutralizing antibody (NAb) and spike protein’s receptor-binding domain immunoglobulin G (S-RBD IgG) among cancer survivors.<br /> <b>Methods</b>: A cross-sectional study was conducted in patients with either solid or hematological cancers who had received two-doses of COVID-19 vaccinations within six months.<br /> <b>Results</b>: From 119 subjects, the COVID-19 vaccines demonstrated laboratory efficacy (median NAb=129.03 AU/mL; median S-RBD IgG=270.53 AU/mL). The seropositive conversion of NAb reached 94.1% and S-RBD IgG reached 93.3%. Additionally, the S-RBD IgG had very weak correlation with absolute monocyte count (R=-0.185; <i>p</i>-value=0.044). The NAb also had very weak correlation with leukocyte (Kendall’s tau-b (τb)=-0.147; <i>p</i>-value=0.019), absolute neutrophil count (τb=-0.126; <i>p</i>-value=0.044), absolute eosinophil count (τb=-0.132; <i>p</i>-value=0.034).<br /> <b>Conclusion</b>: The seropositivity rate of anti-SARS-CoV-2 NAb and S-RBD IgG were significantly high. However, the CBC derived inflammatory biomarkers had poor correlation with anti-SARS-CoV-2 NAb and S-RBD IgG. Thus, anti-SARS-CoV-2 NAb and S-RBD IgG are currently the only reliable markers for measuring the COVID-19 vaccine efficacy which should be widely accessible.
Background: Gynecologic cancer is a significant public health concern worldwide, with three of the top ten most common cancers affecting women. The increasing incidence of deep vein thrombosis (DVT) and the disproportionately poor outcomes in cancer patients necessitates urgent intervention. This study aimed to analyze the factors affecting the survivability of cancer patients with DVT, especially among gynecologic and non-gynecologic cancers. Methods: An ambispective cohort study was conducted among gynecologic and non-gynecologic cancer patients with DVT, from January 2011 until August 2013. Results: Among 223 cancer subjects with DVT, 61.4% of the subjects developed short-term mortality. In the overall group, the survival time was significantly lower in subjects who developed immobilization status (p-value <0.001), advanced cancer stages (p-value <0.045), and infection status (p-value <0.001). In the gynecologic cancer group, the survival time was significantly lower in subjects who developed immobilization (p-value 0.007) and infection status (p-value 0.021). In the non-gynecologic cancer group, the survival time was significantly lower in subjects who developed immobilization (p-value 0.008), infection (p-value 0.002), undergo cancer surgery (p-value 0.024), and received high-risk systemic therapy (p-value 0.048). Additionally, the most common infection was pneumonia (29.6%). Conclusions: Both gynecologic and non-gynecologic cancer patients who experienced DVT developed a high short-term mortality. Our finding of immobility, infection, advanced cancer stages, systemic therapy, and cancer surgery as risk factor that affect the survivability highlights the necessity of administering secondary prophylaxis as a standard procedure in clinical practice.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.