Techniques were developed to determine when fish are vulnerable to barotrauma when rapidly decompressed during hydroturbine passage. Sturgeons were decompressed in early life-stages and X-ray radiographs were taken to determine when gas was present in the swim bladder. Barotrauma was observed on day 9 and greater than 75 days after hatching.
Given the burgeoning dam removal movement and the large number of dams approaching obsolescence in the United States, cost estimating data and tools are needed for dam removal prioritization, planning, and execution. We used the list of removed dams compiled by American Rivers to search for publicly available reported costs for dam removal projects. Total cost information could include component costs related to project planning, dam deconstruction, monitoring, and several categories of mitigation activities. We compiled reported costs from 455 unique sources for 668 dams removed in the United States from 1965 to 2020. The dam removals occurred within 571 unique projects involving 1–18 dams. When adjusted for inflation into 2020 USD, cost of these projects totaled $1.522 billion, with per-dam costs ranging from $1 thousand (k) to $268.8 million (M). The median cost for dam removals was $157k, $823k, and $6.2M for dams that were< 5 m, between 5–10 m, and > 10 m in height, respectively. Geographic differences in total costs showed that northern states in general, and the Pacific Northwest in particular, spent the most on dam removal. The Midwest and the Northeast spent proportionally more on removal of dams less than 5 m in height, whereas the Northwest and Southwest spent the most on larger dam removals > 10 m tall. We used stochastic gradient boosting with quantile regression to model dam removal cost against potential predictor variables including dam characteristics (dam height and material), hydrography (average annual discharge and drainage area), project complexity (inferred from construction and sediment management, mitigation, and post-removal cost drivers), and geographic region. Dam height, annual average discharge at the dam site, and project complexity were the predominant drivers of removal cost. The final model had an R2 of 57% and when applied to a test dataset model predictions had a root mean squared error of $5.09M and a mean absolute error of $1.45M, indicating its potential utility to predict estimated costs of dam removal. We developed a R shiny application for estimating dam removal costs using customized model inputs for exploratory analyses and potential dam removal planning.
We measured food availability and diet composition of juvenile salmonids over multiple years and seasons before and during the world's largest dam removal on the Elwha River, Washington State. We conducted these measurements over three sediment-impacted sections (the estuary and two sections of the river downstream of each dam) and compared these to data collected from mainstem tributaries not directly affected by the massive amount of sediment released from the reservoirs. We found that sediment impacts from dam removal significantly reduced invertebrate prey availability, but juvenile salmon adjusted their foraging so that the amount of energy in diets was similar before and during dam removal. This general pattern was seen in both river and estuary habitats, although the mechanisms driving the change and the response differed between habitats. In the estuary, the dietary shifts were related to changes in invertebrate assemblages following a hydrological transition from brackish to freshwater caused by sediment deposition at the river's mouth. The loss of brackish invertebrate species caused fish to increase piscivory and rely on new prey sources such as plankton. In the river, energy provided to fish by Ephemeroptera, Plecoptera, and Trichoptera taxa before dam removal was replaced first by terrestrial invertebrates, and then by sediment-tolerant taxa such as Chironomidae. The results of our study are consistent with many others that have shown sharp declines in invertebrate density during dam removal. Our study further shows how those changes can move through the food web and affect fish diet composition, selectivity, and energy availability. As we move further along the dam removal response trajectory, we hypothesize that food web complexity will continue to increase as annual sediment load now approaches natural background levels, anadromous fish have recolonized the majority of the watershed between and above the former dams, and revegetation and microhabitats continue to develop in the estuary.
Objective Redside Shiner Richardsonius balteatus has expanded from its native range in the Pacific Northwest region of North America to establish populations in six other western states. This expansion has fueled concerns regarding competition between Redside Shiner and native species, including salmonids. We developed a bioenergetic model for Redside Shiner, providing a powerful tool to quantify its trophic role in invaded ecosystems and evaluate potential impacts on native species. Methods Mass‐ and temperature‐dependent functions for consumption and respiration were fit based on controlled laboratory experiments of maximum consumption rates and routine metabolic rates using intermittent‐flow respirometry, across a range of fish sizes (0.6–27.3 g) and temperatures (5–31°C). Laboratory growth experiments were conducted to corroborate model performance across different temperatures and feeding rates. Result Initial bioenergetic simulations of long‐term growth experiments indicated large model error for predicted consumption and growth, and deviations from observed responses varied systematically as a function of daily consumption rate (J·g−1·d−1) and water temperature. A growth rate error correction function was developed and included in the bioenergetics model framework on a daily time step, resulting in decreased absolute model error in all experimental groups. Predicted values from the corrected model were highly correlated with observed values (R2; consumption = 0.97, final weight = 0.99) and unbiased. These results show that the optimal temperature for Redside Shiner growth (18°C) exceeds that of Pacific salmon Oncorhynchus spp. by 2–6°C under a scenario of high food availability and moderate food quality. Conclusion Consequently, increases in water temperature associated with climate change may favor growth and expansion of Redside Shiner populations, while negatively affecting some salmonids. The bioenergetics model presented here provides the necessary first step in quantifying trophic impacts in sensitive ecosystems where Redside Shiner have invaded or in ecosystems where anadromous salmonid reintroductions are being considered.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.