The bZIP transcription factor VIP1 interacts with the Agrobacterium virulence protein VirE2, but the role of VIP1 in Agrobacterium-mediated transformation remains controversial. Previously tested vip1-1 mutant plants produce a truncated protein containing the crucial bZIP DNA-binding domain. We generated the CRISPR/Cas mutant vip1-2 that lacks this domain. The transformation susceptibility of vip1-2 and wild-type plants is similar. Because of potential functional redundancy among VIP1 homologs, we tested transgenic lines expressing VIP1 fused to a SRDX repression domain. All VIP1-SRDX transgenic lines showed wild-type levels of transformation, indicating that neither VIP1 nor its homologs are required for Agrobacterium-mediated transformation. Because VIP1 is involved in innate immune response signaling, we tested the susceptibility of vip1 mutant and VIP1-SRDX plants to Pseudomonas syringae and Botrytis cinerea. vip1 mutant and VIP1-SRDX plants show increased susceptibility to B. cinerea but not to P. syringae infection, suggesting a role for VIP1 in B. cinerea, but not in P. syringae, defense signaling. B. cinerea susceptibility is dependent on abscisic acid (ABA) which is also important for abiotic stress responses. The germination of vip1 mutant and VIP1-SRDX seeds is sensitive to exogenous ABA, suggesting a role for VIP1 in response to ABA. vip1 mutant and VIP1-SRDX plants show increased tolerance to growth in salt, indicating a role for VIP1 in response to salt stress.
Agrobacterium effector protein VirE2 is important for plant transformation. VirE2 likely coats transferred DNA (T-DNA) in the plant cell and protects it from degradation. VirE2 localizes to the plant cytoplasm and interacts with several host proteins. Plant-expressed VirE2 can complement a virE2 mutant Agrobacterium strain to support transformation. We investigated whether VirE2 could facilitate transformation from a nuclear location by affixing to it a strong nuclear localization signal (NLS) sequence. Only cytoplasmic-, but not nuclear-localized, VirE2 could stimulate transformation. To investigate the ways VirE2 supports transformation, we generated transgenic Arabidopsis plants containing a virE2 gene under the control of an inducible promoter and performed RNA-seq and proteomic analyses before and after induction. Some differentially expressed plant genes were previously known to facilitate transformation. Knockout mutant lines of some other VirE2 differentially expressed genes showed altered transformation phenotypes. Levels of some proteins known to be important for transformation increased in response to VirE2 induction, but prior to or without induction of their corresponding mRNAs. Overexpression of some other genes whose proteins increased after VirE2 induction resulted in increased transformation susceptibility. We conclude that cytoplasmically localized VirE2 modulates both plant RNA and protein levels to facilitate transformation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.