Hydrogen/deuterium exchange mass spectrometry (HDX-MS) is an established method for the interrogation of protein conformation and dynamics. While the data analysis challenge of HDX-MS has been addressed by a number of software packages, new computational tools are needed to keep pace with the improved methods and throughput of this technique. To address these needs, we report an integrated desktop program titled HDX Workbench, which facilitates automation, management, visualization, and statistical cross-comparison of large HDX data sets. Using the software, validated data analysis can be achieved at the rate of generation. The application is available at the project home page http://hdx.florida.scripps.edu.
A hybrid linear ion trap/Orbitrap mass spectrometer was used to perform MS/MS experiments and high resolution mass analysis of lipids desorbed from nerve tissue. A dramatic improvement in mass spectral resolution and a decrease in background are observed in the spectra collected from the Orbitrap mass analyzer, which allow generation of more accurate mass spectrometric images of the distribution of lipids within nerve tissue. Employment of both mass analyzers provides a rapid and reliable means of compound identification based on MS/MS fragmentation and HRMS accurate mass.
Hydrogen deuterium exchange mass spectrometry (HDX-MS) is a well established method for the measurement of solution-phase deuterium incorporation into proteins, which can provide insight into protein conformational mobility. However, most HDX measurements are constrained to regions of the protein where pepsin proteolysis allows detection at peptide resolution. Recently, single-amide resolution deuterium incorporation has been achieved by limiting gas-phase scrambling in the mass spectrometer. This was accomplished by employing a combination of soft ionization and desolvation conditions coupled with the radical-driven fragmentation technique electron transfer dissociation (ETD). Here, a hybrid LTQ-Orbitrap XL is systematically evaluated for its utility in providing single-amide deuterium incorporation for differential HDX analysis of a nuclear receptor upon binding small molecule ligands. We are able to show that instrumental parameters can be optimized to minimize scrambling and can be incorporated into an established and fully automated HDX platform making differential single-amide HDX possible for bottom-up analysis of complex systems. We have applied this system to determine differential single amide resolution HDX data for the peroxizome proliferator activated receptor bound with two ligands of interest.
MALDI mass spectrometric imaging is a technique that provides the ability to identify and characterize endogenous and exogenous compounds spatially within tissue with relatively little sample preparation. While it is a proven methodology for qualitative analysis, little has been reported for its utility in quantitative measurements. In the current work, inherent challenges in MALDI quantification are addressed. Signal response is monitored over successive analyses of a single tissue section to minimize error due to variability in the laser, matrix application, and sample inhomogeneity. Methods for the application of an internal standard to tissue sections are evaluated and used to quantify endogenous lipids in nerve tissue. A precision of 5% or less standard error was achieved, illustrating that MALDI imaging offers a reliable means of in situ quantification for microgram-sized samples and requires minimal sample preparation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.