The advent of single-cell open-chromatin profiling technology has facilitated the analysis of heterogeneity of activity of regulatory regions at single-cell resolution. However, stochasticity and availability of low amount of relevant DNA, cause high drop-out rate and noise in single-cell open-chromatin profiles. We introduce here a robust method called as forest of imputation trees (FITs) to recover original signals from highly sparse and noisy single-cell open-chromatin profiles. FITs makes multiple imputation trees to avoid bias during the restoration of read-count matrices. It resolves the challenging issue of recovering open chromatin signals without blurring out information at genomic sites with cell-type-specific activity. Besides visualization and classification, FITs-based imputation also improved accuracy in the detection of enhancers, calculating pathway enrichment score and prediction of chromatin-interactions. FITs is generalized for wider applicability, especially for highly sparse read-count matrices. The superiority of FITs in recovering signals of minority cells also makes it highly useful for single-cell open-chromatin profile from in vivo samples. The software is freely available at https://reggenlab.github.io/FITs/.
The advent of single-cell open-chromatin profiling technology has facilitated the analysis of heterogeneity of activity of regulatory regions at single-cell resolution. However, stochasticity and availability of low amount of relevant DNA cause high drop-out rate and noise in single-cell open-chromatin profiles. We introduce here a robust method called as Forest of Imputation Trees (FITs) to recover original signals from highly sparse and noisy single-cell open-chromatin profiles. FITs makes a forest of imputation trees to avoid bias during the restoration of read-count matrices. It resolves the challenging issue of recovering open chromatin signals without blurring out information at genomic sites with cell-type-specific activity. FITs is generalized for wider applicability, especially for highly sparse read-count matrices. The superiority of FITs in recovering signals of minority cells also makes it highly useful for single-cell open-chromatin profile from in vivo samples.First made online as thesis work at https://repository.iiitd.edu.in/xmlui/handle/123456789/807
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.