This paper explores the properties of a family of bivariate copulas based on a new approach using the counter-monotonic shock method. The resulting copula covers the full range of negative dependence induced by one parameter. Expressions for the copula and density are derived and many theoretical properties are examined thoroughly, including explicit expressions for prominent measures of dependence, namely Spearman’s rho, Kendall’s tau and Blomqvist’s beta. The convexity properties of this copula are presented, together with explicit expressions of the mixed moments. Estimation of the dependence parameter using the method of moments is considered, then a simulation study is carried out to evaluate the performance of the suggested estimator. Finally, an application of the proposed copula is illustrated by means of a real data set on air quality in New York City.
We introduce a new family of bivariate exponential distributions based on the counter-monotonic shock model. This family of distribution is easy to simulate and includes the Fréchet lower bound, which allows to span all degrees of negative dependence. The construction and distributional properties of the proposed bivariate distribution are presented along with an estimation of the parameters involved in our model based on the method of moments. A simulation study is carried out to evaluate the performance of the suggested estimators. An extension to the general model describing both negative and positive dependence is sketched in the last section of the paper.
The linear correlation coefficient of Bravais-Pearson is considered a powerful indicator when the dependency relationship is linear and the error variate is normally distributed. Unfortunately in finance and in survival analysis the dependency relationship may not be linear. In such case, the use of rank-based measures of dependence, like Kendall’s tau or Spearman rho are recommended. In this direction, under length-biased sampling, measures of the degree of dependence between the survival time and the covariates appear to have not received much intention in the literature. Our goal in this paper, is to provide an alternative indicator of dependence measure, based on the concept of information gain, using the parametric copulas. In particular, the extension of the Kent’s [18] dependence measure to length-biased survival data is proposed. The performance of the proposed method is demonstrated through simulations studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.