The modeling and control of a wind energy conversion system based on the Doubly Fed Induction Generator DFIG is the discussed theme in this paper. The purpose of this system was to control active and reactive power converted; this control is ensured thanks to the control of the two converters. The proposed control strategies are controlled by PI regulators and the sliding mode technique. In the present work a comparison of the robustness of the 2 controls of the grid side converter (GSC) during a voltage dip is shown. The simulation is carried out using the Matlab/Simulink software with a 300 kW generator.
This paper aims to contribute to the modeling and control of the double star induction machine (DSIM) by a robust method called active disturbance rejection control (ADRC). The ADRC has become in the last decade one of the most important techniques of regulation. This method is based on the use of an ESO (Extended State Observer) which estimates in real-time and at the same time the external disturbances and the errors due to the variations of the parameters of the machine and to the uncertainties of modeling. The two stators of DSIM are powered by three-phase inverters based on transistors and MLI control and the entire system is modeled in Park's reference. We analyze in the Matlab/Simulink environment the dynamic behavior of the system and the different ADRC controllers under different operating conditions. The result has demonstrated the performance and effectiveness of the ADRC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.