A module [Formula: see text] is called coseparable ([Formula: see text]-coseparable) if for every submodule [Formula: see text] of [Formula: see text] such that [Formula: see text] is finitely generated ([Formula: see text] is simple), there exists a direct summand [Formula: see text] of [Formula: see text] such that [Formula: see text] and [Formula: see text] is finitely generated. In this paper, we show that free modules are coseparable. We also investigate whether or not the ([Formula: see text]-)coseparability is stable under taking submodules, factor modules, direct summands, direct sums and direct products. We show that a finite direct sum of coseparable modules is not, in general, coseparable. But the class of [Formula: see text]-coseparable modules is closed under finite direct sums. Moreover, it is shown that the class of coseparable modules over noetherian rings is closed under finite direct sums. A characterization of coseparable modules over noetherian rings is provided. It is also shown that every lifting (H-supplemented) module is coseparable ([Formula: see text]-coseparable).
A module M is called $$\mathfrak {s}$$ s -coseparable if for every nonzero submodule U of M such that M/U is finitely generated, there exists a nonzero direct summand V of M such that $$V \subseteq U$$ V ⊆ U and M/V is finitely generated. It is shown that every non-finitely generated free module is $$\mathfrak {s}$$ s -coseparable but a finitely generated free module is not, in general, $$\mathfrak {s}$$ s -coseparable. We prove that the class of $$\mathfrak {s}$$ s -coseparable modules over a right noetherian ring is closed under finite direct sums. We show that the class of commutative rings R for which every cyclic R-module is $$\mathfrak {s}$$ s -coseparable is exactly that of von Neumann regular rings. Some examples of modules M for which every direct summand of M is $$\mathfrak {s}$$ s -coseparable are provided.
A module [Formula: see text] is called [Formula: see text]-separable if every proper finitely generated submodule of [Formula: see text] is contained in a proper finitely generated direct summand of [Formula: see text]. Indecomposable [Formula: see text]-separable modules are shown to be exactly the simple modules. While direct summands of an [Formula: see text]-separable module do not inherit the property, in general, the question of the stability under direct sums is unanswered. But we obtain some partial answers. It is shown that any infinite direct sum of [Formula: see text]-separable modules is [Formula: see text]-separable. Also, we prove that if [Formula: see text] and [Formula: see text] are [Formula: see text]-separable modules such that [Formula: see text] is [Formula: see text]-projective, then [Formula: see text] is [Formula: see text]-separable. We conclude the paper by providing some characterizations of several classes of rings in terms of [Formula: see text]-separable modules. Among others, we prove that the class of rings [Formula: see text] for which every (injective) [Formula: see text]-module is [Formula: see text]-separable is exactly that of semisimple rings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.