In this paper, a new rumor spreading model in social networks has been investigated. We propose a new version primarily based on the cholera model in order to take into account the expert pages specialized in the dissemination of rumors from an existing IRCSS model. In the second part, we recommend an optimal control strategy to fight against the spread of the rumor, and the study aims at characterizing the three optimal controls which minimize the number of spreader users, fake pages, and corresponding costs; theoretically, we have proved the existence of optimal controls, and we have given a characterization of controls in terms of states and adjoint functions based on a discrete version of Pontryagin’s maximum principle. To illustrate the theoretical results obtained, we propose numerical simulations for several scenarios applying the forward-backward sweep method (FBSM) to solve our optimality system in an iterative process.
We propose to model the phenomenon of the spread of a rumor in social networks in this paper. From an existing SIR model, we manipulate a new one that is based on the model of cholera in order to take into account professional pages that specialize in spreading rumors. In the second part, we introduce a control strategy to fight against the diffusion of the rumor. Our main objective is to characterize the three optimal controls that minimize the number of spreader users, fake pages, and the corresponding costs. For that matter, using the maximum principle of Pontryagin, we prove the existence and we give characterization of our controls. Numerical simulations are given to concretize our approach.
Despite advanced discoveries in cancerology, conventional treatments by surgery, chemotherapy, or radiotherapy remain ineffective in some situations. Oncolytic virotherapy, i.e., the involvement of replicative viruses targeting specific tumor cells, opens new perspectives for better management of this disease. Certain viruses naturally have a preferential tropism for the tumor cells; others are genetically modifiable to present such properties, as the lytic cycle virus, which is a process that represents a vital role in oncolytic virotherapy. In the present paper, we present a mathematical model for the dynamics of oncolytic virotherapy that incorporates multiple time delays representing the multiple time periods of a lytic cycle. We compute the basic reproductive ratio R0, and we show that there exist a disease-free equilibrium point (DFE) and an endemic equilibrium point (DEE). By formulating suitable Lyapunov function, we prove that the disease-free equilibrium (DFE) is globally asymptotically stable if R0 < 1 and unstable otherwise. We also demonstrate that under additional conditions, the endemic equilibrium is stable. Also, a Hopf bifurcation analysis of our dynamic system is used to understand how solutions and their stability change as system parameters change in the case of a positive delay. To illustrate the effectiveness of our theoretical results, we give numerical simulations for several scenarios.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.