The European pond turtle (Emys orbicularis) is a Nearctic element in the African fauna and thought to have invaded North Africa from the Iberian Peninsula. All North African populations are currently identified with the subspecies E. o. occidentalis. However, a nearly range-wide sampling in North Africa used for analyses of mitochondrial and microsatellite DNA provides evidence that only Moroccan populations belong to this taxon, while eastern Algerian and Tunisian pond turtles represent an undescribed distinct subspecies. These two taxa are most closely related to E. o. galloitalica with a native distribution along the Mediterranean coast of northern Spain through southern France to western and southern Italy. This group is sister to a clade comprising several mitochondrial lineages and subspecies of E. orbicularis from Central and Eastern Europe plus Asia, and the successive sisters are E. o. hellenica and E. trinacris. Our results suggest that E. orbicularis has been present in North Africa longer than on the Iberian Peninsula and that after an initial invasion of North Africa by pond turtles from an unknown European source region, there was a phase of diversification in North Africa, followed by a later re-invasion of Europe by one of the African lineages. The differentiation of pond turtles in North Africa parallels a general phylogeographic paradigm in amphibians and reptiles, with deeply divergent lineages in the western and eastern Maghreb. Acknowledging their genetic similarity, we propose to synonymize the previously recognized Iberian subspecies E. o. fritzjuergenobsti with E. o. occidentalis sensu stricto. The seriously imperiled Moroccan populations of E. o. occidentalis represent two Management Units different in mitochondrial haplotypes and microsatellite markers. The conservation status of eastern Algerian pond turtles is unclear, while Tunisian populations are endangered. Considering that Algerian and Tunisian pond turtles represent an endemic taxon, their situation throughout the historical range should be surveyed to establish a basis for conservation measures.
We investigated the mitochondrial phylogeography of spur-thighed tortoises (Testudo graeca) in the Western Mediterranean. In North Africa, four major lineages (A-D) occur that together constitute a well-supported clade corresponding to one of the six major clades within T. graeca; the North African clade is sister to a Caucasian clade representing the subspecies T. g. armeniaca. Phylogenetic relationships between the North African lineages are badly resolved. Lineage A is distributed in Tunisia and adjacent Algeria, lineage B in Algeria and northern Morocco, lineage C in the Libyan Cyrenaica Peninsula, and lineage D north of the High Atlas Mts. and in the Souss Valley (southern Morocco). Lineage B is subdivided into two subgroups, B1 (eastern Morocco and Algeria) and B2 (north-western Morocco). Italian tortoises harbour haplotypes of lineage A, Spanish tortoises of subgroup B1. Based on a relaxed molecular clock calibrated with fossil evidence, the six major mtDNA clades of T. graeca are estimated to have diverged approximately 4.2-1.8 Ma ago; the split between the clades representing the eastern subspecies T. g. ibera and T. g. terrestris is younger than the split between Western Mediterranean tortoises and T. g. armeniaca. The Western Mediterranean lineages A-D were dated to have diverged at least 1.4-1.1 Ma ago; B1 and B2 split approximately 0.7 Ma ago. Our results suggest that Italian and Spanish tortoises were either introduced or originated from trans-oceanic dispersal in historic or prehistoric times. Spur-thighed tortoises invaded North Africa probably across Near Eastern landbridges that emerged in the Late Tertiary. Their diversification in North Africa seems to be correlated with habitat aridization cycles during the Pleistocene. The ranges of the Western Mediterranean lineages largely correspond to the distribution of morphologically defined subspecies in North Africa, with exception of T. g. graeca and T. g. whitei, and of T. g. lamberti and T. g. marokkensis, which are not differentiated. We propose to lump the first two subspecies under the name of T. g. graeca and the latter under the name of T. g. marokkensis. The complex differentiation of spur-thighed tortoises in North Africa implies that the model of a bipartite east-west differentiation, as proposed for other Maghrebian amphibians and reptiles, may be too simplistic, reflecting incomplete locality sampling rather than actual phylogeographic differentiation.
Abstract. Despite being one of the most charismatic elements of the Mediterranean Basin fauna and its threatened status, the western Mediterranean range of Testudo graeca is at present very poorly known. The present work provides the most detailed geographical and ecological description for the North African clade of T. graeca so far. We gathered 283 occurrence data of T. graeca in North Africa and modelled the distribution by means of presence-only distribution modelling tools. The obtained model was then projected to southern Europe in order to explore whether the environmental characteristics of European populations fall into the predicted niche of the species in North Africa.T. graeca showed a wide environmental range in North Africa. Presence localities ranged from the sea level to 2090 m of altitude and from 116 to 1093 mm of annual precipitation. The presence-only model indicates that distribution in North Africa is mainly related to rainfall, specifically rainfall values in the wettest and coldest quarter of the year. The distribution model showed a range of ca. 1 000 000 km 2 . The projection of the model to southern Europe showed that the southern Iberian and Balkan Peninsulas, as well as most Mediterranean islands, present climatic conditions within those found in the range of the species in North Africa.
The bloodfeeding leech genus Placobdella is dominated by North American diversity, with only a single nominal species known from Central America and one from the Palearctic region. This is likely due to considerable underestimation of Palearctic biodiversity, but investigations into potential hidden diversity are lacking. To shed light on this, the present study introduces new data for specimens initially identified as Placobdella costata from Ukraine (close to the type locality),
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.