Acidosis is frequently associated with protein wasting and derangements in amino acid metabolism. As its effect on protein metabolism is significantly modulated by other abnormal metabolic conditions caused by specific illnesses, it is difficult to separate out the effects on protein metabolism solely due to acidosis. The aim of the present study was to evaluate, using a model of isolated perfused rat liver, the direct response of hepatic tissue to acidosis. We have compared hepatic response to perfusion with a solution of pH 7.2 and 7.4 (controls). Parameters of protein and amino acid metabolism were measured using both recirculation and single-pass technique with 4,5-[3H]leucine, [1-14C]leucine and [1-14C]ketoisocaproate (ketoleucine) as tracers and on the basis of difference of amino acid levels in perfusion solution at the beginning and end of perfusion. In liver perfused with a solution of pH 7.2, we observed higher rates of proteolysis, protein synthesis, amino acid utilization and urea production. Furthermore, the liver perfused with a solution of pH 7.2 released a higher amount of proteins to perfusate than the liver perfused with a solution of pH 7.4. Enhanced decarboxylation of ketoisocaproate in liver perfused by a solution of a lower pH indicates increased catabolism of branched-chain amino acids (leucine, valine and isoleucine), decreased reamination of branched-chain keto acids to corresponding essential amino acids and increased ketogenesis from leucine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.