Up-to-date information about the Earth’s surface provided by land cover maps is essential for numerous environmental and land management applications. There is, therefore, a clear need for the continuous and reliable monitoring of land cover and land cover changes. The growing availability of high resolution, regularly collected remote sensing data can support the increasing number of applications that require high spatial resolution products that are frequently updated (e.g., annually). However, large-scale operational mapping requires a highly-automated data processing workflow, which is currently lacking. To address this issue, we developed a methodology for the automated classification of multi-temporal Sentinel-2 imagery. The method uses a random forest classifier and existing land cover/use databases as the source of training samples. In order to demonstrate its operability, the method was implemented on a large part of the European continent, with CORINE Land Cover and High-Resolution Layers as training datasets. A land cover/use map for the year 2017 was produced, composed of 13 classes. An accuracy assessment, based on nearly 52,000 samples, revealed high thematic overall accuracy (86.1%) on a continental scale, and average overall accuracy of 86.5% at country level. Only low-frequency classes obtained lower accuracies and we recommend that their mapping should be improved in the future. Additional modifications to the classification legend, notably the fusion of thematically and spectrally similar vegetation classes, increased overall accuracy to 89.0%, and resulted in ten, general classes. A crucial aspect of the presented approach is that it embraces all of the most important elements of Earth observation data processing, enabling accurate and detailed (10 m spatial resolution) mapping with no manual user involvement. The presented methodology demonstrates possibility for frequent and repetitive operational production of large-scale land cover maps.
After decades of mining and industrialization in Qatar, it is important to estimate their impact on soil pollution with toxic metals. The study utilized 300 topsoil (0-30 cm) samples, multi-spectral images (Landsat 8), spectral indices and environmental variables to model and map the spatial distribution of arsenic (As), chromium (Cr), nickel (Ni), copper (Cu), lead (Pb) and zinc (Zn) in Qatari soils. The prediction model used condition-based rules generated in the Cubist tool. In terms of R 2 and the ratio of performance to interquartile distance (RPIQ), the models showed good predictive capabilities for all elements. Of all of the prediction results, Cu had the highest R 2 = 0.74, followed by As > Pb > Cr > Zn > Ni. This study found that all of the models only chose images from January and February as predictors, which indicates that images from these two months are important for soil toxic metals' monitoring in arid soils, due to the climate and the vegetation cover during this season. Topsoil maps of the six toxic metals were generated. The maps can be used to prioritize the choice of remediation measures and can be applied to other arid areas of similar environmental/socio-economic conditions and pollution causes.
Remote sensing technology serves as a powerful tool for analyzing geospatial characteristics of flood inundation events at various scales. However, the performance of remote sensing methods depends heavily on the flood characteristics and landscape settings. Difficulties might be encountered in mapping the extent of localized flooding with shallow water on riverine floodplain areas, where patches of herbaceous vegetation are interspersed with open water surfaces. To address the difficulties in mapping inundation on areas with complex water and vegetation compositions, a high spatial resolution dataset has to be used to reduce the problem of mixed pixels. The main objective of our study was to investigate the possibilities of using a single date WorldView-2 image of very high spatial resolution and supporting data to analyze spatial patterns of localized flooding on a riverine floodplain. We used a decision tree algorithm with various combinations of input variables including spectral bands of the WorldView-2 image, selected spectral indices dedicated to mapping water surfaces and vegetation, and topographic data. The overall accuracies of the twelve flood extent maps derived with the decision tree method and performed on both pixels and image objects ranged between 77% and 95%. The highest mapping overall accuracy was achieved with a method that utilized all available input data and the objectbased image analysis. Our study demonstrates the possibility of using single date
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.