Methicillin-resistant Staphylococcus aureus (MRSA) is a dangerous pathogen occurring not only in hospitals but also in foodstuff. Currently, discussions on the issue of the increasing resistance, and timely and rapid diagnostic of resistance strains have become more frequent and sought. Therefore, the aim of this study was to design an effective platform for DNA isolation from different species of microorganisms as well as the amplification of mecA gene that encodes the resistance to β-lactam antibiotic formation and is contained in MRSA. For this purpose, we fabricated 3D-printed chip that was suitable for bacterial cultivation, DNA isolation, PCR, and detection of amplified gene using gold nanoparticle (AuNP) probes as an indicator of MRSA. Confirmation of the MRSA presence in the samples was based on a specific interaction between mecA gene with the AuNP probes and a colorimetric detection, which utilized the noncross-linking aggregation phenomenon of DNA-functionalized AuNPs. To test the whole system, we analyzed several real refractive indexes, in which two of them were positively scanned to find the presence of mecA gene. The aggregation of AuNP probes were reflected by 75% decrease of absorbance (λ = 530 nm) and change in AuNPs size from 3 ± 0.05 to 4 ± 0.05 nm (n = 5). We provide the one-step identification of mecA gene using the unique platform that employs the rapid, low-cost, and easy-to-use colorimetric method for MRSA detection in various samples.
A highly porous scaffold is a desirable outcome in the field of tissue engineering. The porous structure mediates water-retaining properties that ensure good nutrient transportation as well as creates a suitable environment for cells. In this study, porous antibacterial collagenous scaffolds containing chitosan and selenium nanoparticles (SeNPs) as antibacterial agents were studied. The addition of antibacterial agents increased the application potential of the material for infected and chronic wounds. The morphology, swelling, biodegradation, and antibacterial activity of collagen-based scaffolds were characterized systematically to investigate the overall impact of the antibacterial additives. The additives visibly influenced the morphology, water-retaining properties as well as the stability of the materials in the presence of collagenase enzymes. Even at concentrations as low as 5 ppm of SeNPs, modified polymeric scaffolds showed considerable inhibition activity towards Gram-positive bacterial strains such as Staphylococcus aureus and methicillin-resistant Staphylococcus aureus and Staphylococcus epidermidis in a dose-dependent manner.
The first line of defense against pathogens that enter the host by the oral route involves the Peyer's Patches (PP). For centuries many populations of the mediterranean basin have empirically administered soured milk (yogurt) to prevent and treat diarrhoea and entero-colitis. Recent reports have offered evidence in favour of a possible influence of yogurt on the host's immunocompetence. Scope of the present study was to evaluate the influence of a diet supplemented with yogurt on the PP from BALB/c mice. The results reported here suggest that yogurt feeding potentiates the host's cell-mediated immune response by increasing the percentage of B lymphocytes and the PHA and LPS-induced proliferative responses of PP cell suspensions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.