Purpose Direct ink writing (DIW) is a robust additive manufacturing technology for the fabrication of fiber-reinforced thermoset composites. However, this technique is currently limited to low design complexity and minimal heights. This study aims to investigate the feasibility of UV-assisted DIW of composites to enhance the green-part strength of the printed inks and resolve the complexity and the height limitations of DIW technology. Design/methodology/approach The experimental approach involved the preparation of the thermoset inks that are composed of nanoclay, epoxy, photopolymer and glass fiber reinforcement. Composite specimens were fabricated in complex geometries from these ink feedstocks using UV-assisted, hybrid 3D-printing technology. Fabricated specimens were characterized using optical microscopy, three-point bending mechanical tests and numerical simulations. Findings The introduced hybrid, UV-assisted 3D-printing technology allowed the fabrication of tall and overhanging thermoset composite structures up to 30% glass fiber reinforcement without sagging during or after printing. Glass fiber reinforcement tremendously enhanced the mechanical performance of the composites. UV-curable resin addition led to a reduction in strength (approximately 15%) compared to composites fabricated without UV resin. However, this reduction can be eliminated by increasing the glass fiber content within the hybrid thermoset composite. Numerical simulations indicate that the fiber orientation significantly affects the mechanical performance of the printed composites. Originality/value This study showed that the fabrication of high-performing thermoset composites in complex geometries was possible via hybrid DIW technology. This new technology will tremendously expand the application envelope of the additively manufactured thermoset composites and the fabrication of large composite structures with high mechanical performance and dimensional freedom will benefit various engineering fields including the fields of aerospace, automotive and marine engineering.
Copper(I) sulfide (Cu2S) is a low-cost, earth-abundant, and non-toxic thermoelectric material for applications in the middle-high temperature range (>650 K). Although 3D printing these materials can simplify their manufacturing, elevated temperatures observed during sintering impair their crystal structure and energy conversion efficiency. In this study, we demonstrated a novel post-processing methodology to revert the thermoelectric properties of the 3D printed Cu2-xS materials back to the unimpaired state via sulfur infusion. After printing and sintering, sulfur was infused into the specimens under vacuum to optimize their crystal structure and achieve high thermoelectric efficiency. Chemical analysis and X-ray Diffraction (XRD) tests showed that after the sulfur infusion process, the Cu/S ratio was reverted close to the stoichiometric level. 3D printed Cu2-xS showed p-type thermoelectric behavior with electrical conductivity peaking at 143 S-cm-1 at 750 K and Seebeck coefficient of 175 µV-K-1 at 627 K. Figure of merit (ZT) value of 1.0 at 780 K was achieved which is the highest value ever reported for a 3D printed Cu2-xS thermoelectrics at this temperature. Fabrication of environmentally friendly thermoelectric materials with extended dimensional freedom and conversion efficiency has the potential to impact the thermoelectric industry with new energy conversion applications and lowered manufacturing costs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.