Previous studies with 95 bread wheat doubled haploid lines (DHLs) from the cross Chinese Spring (CS)xSQ1 trialled over 24 yearxtreatmentxlocations identified major yield quantitative trait loci (QTLs) in homoeologous locations on 7AL and 7BL, expressed mainly under stressed and non-stressed conditions, respectively. SQ1 and CS contributed alleles increasing yield on 7AL and 7BL, respectively. The yield component most strongly associated with these QTLs was grains per ear. Additional results which focus on the 7AL yield QTL are presented here. Trials monitoring agronomic, morphological, physiological, and anatomical traits revealed that the 7AL yield QTL was not associated with differences in flowering time or plant height, but with significant differences in biomass at maturity and anthesis, biomass per tiller, and biomass during tillering. In some trials, flag leaf chlorophyll content and leaf width at tillering were also associated with the QTL. Thus, it is likely that the yield gene(s) on 7AL affects plant productivity. Near-isogenic lines (NILs) for the 7AL yield QTL with CS or SQ1 alleles in an SQ1 background showed the SQ1 allele to be associated with >20% higher yield per ear, significantly higher flag leaf chlorophyll content, and wider flag leaves. Epidermal cell width and distance between leaf vascular bundles did not differ significantly between NILs, so the yield-associated gene may influence the number of cell files across the leaf through effects on cell division. Interestingly, comparative mapping with rice identified AINTEGUMENTA and G-protein subunit genes affecting lateral cell division at locations homologous to the wheat 7AL yield QTL.
The abscission zone in fruit pedicels plays an important role in affecting not only water uptake in the developing fruit, but also in the transport of chemical signals from root to shoot. In order to characterize the hydraulic network of tomato fruit pedicels, we applied various techniques, including light, fluorescence microscopy, electron microscopy, maceration, tissue clearing, and X-ray computed tomography. Because of significant changes in xylem anatomy, the abscission zone in tomato fruit pedicels is illustrated to show a clear reduction in hydraulic conductance. Based on anatomical measurements, the theoretical axial xylem conductance was calculated via the Hagen-Poiseuille law, suggesting that the hydraulic resistance of the abscission zone increases at least two orders of magnitude compared to the pedicel zone near the stem. The advantages and shortcomings of the microscope techniques applied are discussed.
BackgroundWheat is widely affected by drought. Low excised-leaf water loss (ELWL) has frequently been associated with improved grain yield under drought. This study dissected the genetic control of ELWL in wheat, associated physiological, morphological and anatomical leaf traits, and compared these with yield QTLs.MethodsNinety-four hexaploid wheat (Triticum aestivum L.) doubled haploids, mapped with over 700 markers, were tested for three years for ELWL from detached leaf 4 of glasshouse-grown plants. In one experiment, stomata per unit area and leaf thickness parameters from leaf cross-sections were measured. QTLs were identified using QTLCartographer.ResultsELWL was significantly negatively correlated with leaf length, width, area and thickness. Major QTLs for ELWL during 0–3 h and 3–6 h were coincident across trials on 3A, 3B, 4B, 5B, 5D, 6B, 7A, 7B, 7D and frequently coincident (inversely) with leaf size QTLs. Yield in other trials was sometimes associated with ELWL and leaf size phenotypically and genotypically, but more frequently under non-droughted than droughted conditions. QTL coincidence showed only ELWL to be associated with drought/control yield ratio.DiscussionOur results demonstrated that measures of ELWL and leaf size were equally effective predictors of yield, and both were more useful for selecting under favourable than stressed conditions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.