Designing a biomaterial with excellent bioactivity, biocompatibility, mechanical strength, porosity, and osteogenic properties is essential to incorporate therapeutic agents in order to promote efficient bone regeneration. The work intended to prepare bioactive glass with tailor-made equal Ca/P (CP) ratio to obtain clinophosinaite (Cpt) as dominant phase. Clinophosinaite (Na 3 CaPSiO 7 ) is one of the rarest phases of bioactive glass (BG), which is supposed to play key role in bioactivity. The novelty of this work is to track the required sintering temperature to attain equimolar calcium phosphate-containing clinophosinaite phase and its behavior. Further, its consequent physicochemical and biological properties were analyzed. Phase transition from Rhenanite to Cpt, and later the Cpt emerged as dominant phase with increase of calcination temperature from 700 to 1000 C was studied. The quantifying evolution of Cpt with Rhenanite over increasing annealing temperature also results with the major morphological modifications. BET analysis confirmed the surface area and porosity (Type-IV mesoporous) were gradually elevated upto 900 C, which had contrary effect on mechanical strength. Formation of hydroxyl carbonate apatite (HCA) layer confirmed the bioactivity of the prepared samples at varying time intervals. The CP samples demonstrated better hemocompatibility in post-immersion (i.e., less than 1% of lysis) when compared with pre-immersion. Enhanced protein adsorption and cumulative release (85%) of Simvastatin (SIM) drug was attained at 900 C treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.