Carrot is a vital supply of dietary fiber, vitamins, and carotenoids, and it is also rich in antioxidants and minerals. Soil salinity significantly reduces the yield and quality of carrots. Mycorrhiza inoculum (AMF) is known to improve morphological and biochemical traits of vegetables even under saline conditions. But the role of AMF in combating soil salinity effect in carrot is not studied in detail. Therefore here, in the first set, carrot seeds are inoculated with microbes in a pot experiment under polyhouse condition. In total, we applied 7 treatments with different combinations of Mycorrhiza inoculum (
Glomus mosseae
(G
m
) and
Gigaspora gigantea
(G
g
)) and phosphate solubilizing bacteria (
Pseudomonas fluroscens
(P
f
)). In pot experiment study the best two treatments were the combination of G
m
+ P
f
+ G
G
and P
f
+ G
G
. Both of these treatments were selected for validation under the open field conditions. Primarily, there seems to be a promising opportunity for AMF application to carrots under pot culture as well as under field trials because of promising effect towards morphological parameters, especially root weight, and disparities in nutrients and metabolites. Overall, our study highlights mycorrhizal fungi and other microbes' efficacy in achieving a successful carrot production under salinity stress.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.