Helicopters can be considered as “any-terrain vehicles” as they can take off and land at any location. The aerodynamic characteristics of helicopters are more complicated than those of fixed-wing aircraft. The rotor is the source of lift and thrust for helicopters. The complex aerodynamic characteristics of helicopters are due to their rotational frame and because variations in velocity and pressure throughout the blades. Moreover, the airfoil undergoes phase changes because half of the phase exhibits a trailing edge toward the flow. In this study, four isolated helicopter rotor blades were analyzed using ANSYS Fluent in terms of flow in a static domain under a non-rotating condition. Supercritical airfoils used in high-speed aircraft were found to be incredibly useful in the transonic region. They increase the critical and drag-divergence Mach numbers. Incorporating supercritical airfoils in helicopter rotor blades ensures suitable flow characteristics and more than 50% efficiency compared with those of the HH02 blade in a stationary frame. Analyses were conducted for HH02 and NASA SC(2)-0714 airfoils considering Mach numbers of 0.3, 0.4, and 0.5 without rotation. The post-processing results prove that the NASA SC(2)-0714 airfoil rotor achieves better aerodynamic performance than the HH02 airfoil rotor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.