This article highlights new members, novel mechanisms of action, new functions, and interesting applications of antimicrobial peptides reported in 2014. As of December 2014, over 100 new peptides were registered into the Antimicrobial Peptide Database, increasing the total number of entries to 2493. Unique antimicrobial peptides have been identified from marine bacteria, fungi, and plants. Environmental conditions clearly influence peptide activity or function. Human α-defensin HD-6 is only antimicrobial under reduced conditions. The pH-dependent oligomerization of human cathelicidin LL-37 is linked to double-stranded RNA delivery to endosomes, where the acidic pH triggers the dissociation of the peptide aggregate to release its cargo. Proline-rich peptides, previously known to bind to heat shock proteins, are shown to inhibit protein synthesis. A model antimicrobial peptide is demonstrated to have multiple hits on bacteria, including surface protein delocalization. While cell surface modification to decrease cationic peptide binding is a recognized resistance mechanism for pathogenic bacteria, it is also used as a survival strategy for commensal bacteria. The year 2014 also witnessed continued efforts in exploiting potential applications of antimicrobial peptides. We highlight 3D structure-based design of peptide antimicrobials and vaccines, surface coating, delivery systems, and microbial detection devices involving antimicrobial peptides. The 2014 results also support that combination therapy is preferred over monotherapy in treating biofilms.
Staphylococcus aureus can live together in the form of biofilms to avoid elimination by the host. Thus, a useful strategy to counteract bacterial biofilms is to re-engineer human antimicrobial peptide LL-37 so that it can be used as a remedy for preventing and removing biofilms. This study reports antibiofilm effects of four human cathelicidin LL-37 peptides against community-associated and hospital isolated methicillin-resistant Staphylococcus aureus (MRSA) strains. Although the intact molecule LL-37 inhibited biofilm formation at low concentrations, it did not inhibit bacterial attachment nor disrupt preformed biofilms. However, two 17-residue peptides, GF-17 and 17BIPHE2, inhibited bacterial attachment, biofilm growth, and disrupted established biofilms. An inactive peptide RI-10 was used as a negative control. Our results obtained using the S. aureus mutants in a static biofilm model are consistent with the literature obtained in a flow cell biofilm model. Because 17BIPHE2 is the most effective biofilm disruptor with desired stability to proteases, it is a promising lead for developing new anti-MRSA biofilm agents.
Short antimicrobial peptides are essential to keep us healthy and their lasting potency can inspire the design of new types of antibiotics. This study reports the design of a family of eight-residue tryptophan-rich peptides (TetraF2W) obtained by converting the four phenylalanines in temporin-SHf to tryptophans. The temporin-SHf template was identified from the antimicrobial peptide database (http://aps.unmc.edu/AP). Remarkably, the double arginine variant (TetraF2W-RR) was more effective in killing methicillin-resistant Staphylococcus aureus (MRSA) USA300, but less cytotoxic to human skin HaCat and kidney HEK293 cells, than the lysine-containing dibasic combinations (KR, RK and KK). Killing kinetics and fluorescence spectroscopy suggest membrane targeting of TetraF2W-RR, making it more difficult for bacteria to develop resistance. Because established biofilms on medical devices are difficult to remove, we chose to covalently immobilize TetraF2W-RR onto the polyethylene terephthalate (PET) surface to prevent biofilm formation. The successful surface coating of the peptide is supported by FT-IR and XPS spectroscopies, chemical quantification, and antibacterial assays. This peptide-coated surface indeed prevented S. aureus biofilm formation with no cytotoxicity to human cells. In conclusion, TetraF2W-RR is a short Trp-rich peptide with demonstrated antimicrobial and anti-biofilm potency against MRSA in both the free and immobilized forms. Because these short peptides can be synthesized cost effectively, they may be developed into new antimicrobial agents or used as surface coating compounds.
Antimicrobial peptides are a special class of natural products with potential applications as novel therapeutics. This study focuses on six temporins (four with no activity data and two as positive controls). Using synthetic peptides, we report antibacterial, antifungal, and anticancer activities of temporins-CPa, CPb, 1Ga, 1Oc, 1Ola, and 1SPa. While temporin-1Ga and temporin-1OLa showed higher antifungal and anticancer activity, most of these peptides were active primarily against Gram-positive bacteria. Temporin-1OLa, with the highest cell selectivity index, could preferentially kill methicillin-resistant Staphylococcus aureus (MRSA), consistent with a reduced hemolysis in the presence of bacteria. Mechanistically, temporin-1OLa rapidly killed MRSA by damaging bacterial membranes. Using micelles as a membrane-mimetic model, we determined the three-dimensional structure of temporin-1OLa by NMR spectroscopy. The peptide adopted a two-domain structure where a hydrophobic patch is followed by a classic amphipathic helix covering residues P3-I12. Such a structure is responsible for anti-biofilm ability in vitro and in vivo protection of wax moths Galleria mellonella from staphylococcal infection. Finally, our bioinformatic analysis leads to a classification of temporins into six types and confers significance to this NMR structure since temporin-1OLa shares a sequence model with 62% of temporins. Collectively, our results indicate the potential of temporin-1OLa as a new anti-MRSA compound, which shows an even better anti-biofilm capability in combination with linezolid.
This study aims to push the frontier of the engineering of human cathelicidin LL-37, a critical antimicrobial innate immune peptide that wards off invading pathogens. By sequential truncation of the smallest antibacterial peptide (KR12) of LL-37 and conjugation with fatty acids, with varying chain lengths, a library of lipopeptides is generated. These peptides are subjected to antibacterial activity and hemolytic assays. Candidates (including both forms made of l- and d-amino acids) with the optimal cell selectivity are subsequently fed to the second layer of in vitro filters, including salts, pH, serum, and media. These practices lead to the identification of a miniature LL-37 like peptide (d-form) with selectivity, stability, and robust antimicrobial activity in vitro against both Gram-positive and negative bacteria. Proteomic studies reveal far fewer serum proteins that bind to the d-form than the l-form peptide. C10-KR8d targets bacterial membranes to become helical, making it difficult for bacteria to develop resistance in a multiple passage experiment. In vivo, C10-KR8d is able to reduce bacterial burden of methicillin-resistant Staphylococcus aureus (MRSA) USA300 LAC in neutropenic mice. In addition, this designer peptide prevents bacterial biofilm formation in a catheter-associated mouse model. Meanwhile, C10-KR8d also recruits cytokines to the vicinity of catheters to clear infection. Thus, based on the antimicrobial region of LL-37, this study succeeds in identifying the smallest anti-infective peptide C10-KR8d with both robust antimicrobial, antibiofilm, and immune modulation activities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.