Abstract-Communication messages in vehicular ad hoc networks (VANET) can be used to locate and track vehicles. While tracking can be beneficial for vehicle navigation, it can also lead to threats on location privacy of vehicle user. In this paper, we address the problem of mitigating unauthorized tracking of vehicles based on their broadcast communications, to enhance the user location privacy in VANET. Compared to other mobile networks, VANET exhibits unique characteristics in terms of vehicular mobility constraints, application requirements such as a safety message broadcast period, and vehicular network connectivity. Based on the observed characteristics, we propose a scheme called AMOEBA, that provides location privacy by utilizing the group navigation of vehicles. By simulating vehicular mobility in freeways and streets, the performance of the proposed scheme is evaluated under VANET application constraints and two passive adversary models. We make use of vehicular groups for anonymous access to location based service applications in VANET, for user privacy protection. The robustness of the user privacy provided is considered under various attacks.
Abstract-We consider a scenario where a sophisticated jammer jams an area in a single-channel wireless sensor network. The jammer controls the probability of jamming and transmission range to cause maximal damage to the network in terms of corrupted communication links. The jammer action ceases when it is detected by a monitoring node in the network, and a notification message is transferred out of the jamming region. The jammer is detected at a monitor node by employing an optimal detection test based on the percentage of incurred collisions. On the other hand, the network computes channel access probability in an effort to minimize the jamming detection plus notification time. In order for the jammer to optimize its benefit, it needs to know the network channel access probability and number of neighbors of the monitor node. Accordingly, the network needs to know the jamming probability of the jammer. We study the idealized case of perfect knowledge by both the jammer and the network about the strategy of one another, and the case where the jammer or the network lack this knowledge. The latter is captured by formulating and solving optimization problems, the solutions of which constitute best responses of the attacker or the network to the worst-case strategy of each other. We also take into account potential energy constraints of the jammer and the network. We extend the problem to the case of multiple observers and adaptable jamming transmission range and propose a intuitive heuristic jamming strategy for that case.
dog frog ship bird cat horse ship automobile airplane automobile airplane automobile bird cat deer dog frog horse ship truck Original Labels:
Social media platforms provide an environment where people can freely engage in discussions. Unfortunately, they also enable several problems, such as online harassment. Recently, Google and Jigsaw started a project called Perspective, which uses machine learning to automatically detect toxic language. A demonstration website has been also launched, which allows anyone to type a phrase in the interface and instantaneously see the toxicity score [1].In this paper, we propose an attack on the Perspective toxic detection system based on the adversarial examples. We show that an adversary can subtly modify a highly toxic phrase in a way that the system assigns significantly lower toxicity score to it. We apply the attack on the sample phrases provided in the Perspective website and show that we can consistently reduce the toxicity scores to the level of the non-toxic phrases. The existence of such adversarial examples is very harmful for toxic detection systems and seriously undermines their usability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.