We report clinical profile of hundred and nine patients with SARS CoV-2 infection, and whole genome sequences (WGS) of seven virus isolates from the first reported cases in India, with various international travel histories. Comorbidities such as diabetes, hypertension, and cardiovascular disease were frequently associated with severity of the disease. WBC and neutrophil counts showed an increase, while lymphocyte counts decreased in patients with severe infection suggesting a possible neutrophil mediated organ damage, while immune activity may be diminished with decrease in lymphocytes leading to disease severity. Increase in SGOT, SGPT and blood urea suggests the functional deficiencies of liver, heart, and kidney in patients who succumbed to the disease when compared to the group of recovered patients. The WGS analysis showed that these isolates were classified into two clades: I/A3i, and A2a (four according to GISAID: O, L, GR, and GH). Further, WGS phylogeny and travel history together indicate possible transmission from Middle East and Europe. Three S protein variants: Wuhan reference, D614G, and Y28H were identified predicted to possess different binding affinities to host ACE2.
Against the backdrop of the second wave of COVID‐19 pandemic in India that started in March 2021, we have monitored the spike (S) protein mutations in all the reported (GISAID portal) whole‐genome sequences of SARS‐CoV‐2 circulating in India from 1 January 2021 to 31 August 2021. In the 43,102 SARS‐CoV‐2 genomic sequences analysed, we have identified 24,260 amino acid mutations in the S protein, based on which 265 Pango lineages could be categorized. The dominant lineage in most of the 28 states of India and its 8 union territories was B.1.617.2 (the delta variant). However, the states Madhya Pradesh, Jammu & Kashmir, and Punjab had B.1.1.7 (alpha variant) as the major lineage, while the Himachal Pradesh state reported B.1.36 as the dominating lineage. A detailed analysis of various domains of S protein was carried out for detecting mutations having a prevalence of >1%; 70, 18, 7, 3, 9, 4, and 1 ( N = 112) such mutations were observed in the N‐terminal domain, receptor binding domain, C ‐terminal domain, fusion peptide region, heptapeptide repeat (HR)‐1 domains, signal peptide domain, and transmembrane region, respectively. However, no mutations were recorded in the HR‐2 and cytoplasmic domains of the S protein. Interestingly, 13.39% ( N = 15) of these mutations were reported to increase the infectivity and pathogenicity of the virus; 2% ( N = 3) were known to be vaccine breakthrough mutations, and 0.89% ( N = 1) were known to escape neutralizing antibodies. The biological significance of 82% ( N = 92) of the reported mutations is yet unknown. As SARS‐CoV‐2 variants are emerging rapidly, it is critical to continuously monitor local viral mutations to understand national trends of virus circulation. This can tremendously help in designing better preventive regimens in the country, and avoid vaccine breakthrough infections.
Against the backdrop of the second wave of COVID-19 pandemic in India that started in March 2021, we have monitored the spike (S) protein mutations in all the reported (GISAID portal) whole genome sequences of SARS CoV-2 circulating in India from 1 January 2021 to 31 August 2021. In the 43,102 SARS-CoV-2 genomic sequences analysed, we have identified 24, 260 mutations in the S protein, based on which 265 pango lineages could be categorised. The dominant lineage in most of the 28 states of India and its 8 union territories was B.1.617.2 (the delta variant). However, the states Madhya Pradesh, Jammu & Kashmir, and Punjab had B.1.1.7 (alpha variant) as the major lineage, while the Himachal Pradesh state reported B.1.36 as the dominating lineage. A detailed analysis of various domains of S protein was carried out for detecting mutations having a prevalence of >1%; 70, 18, 7, 3, 9, 4, and 1 (N=112) such mutations were observed in the N -terminal domain, receptor binding domain, C -terminal domain, fusion peptide region, heptapeptide repeat (HR)-1 domains, signal peptide domain, and transmembrane region, respectively. However, no mutations were recorded in the HR-2, and cytoplasmic domains of the S protein. Interestingly, 13.39% (N=15) of these mutations were reported to increase the infectivity and pathogenicity of the virus; 2%(N=3) were known to be vaccine breakthrough mutations; and 0.89%(N=1) were known to escape neutralising antibodies. Biological significance of 82% (N=92) of the reported mutations is yet unknown. As SARS-CoV-2 variants are emerging rapidly, it is critical to continuously monitor local viral mutations to understand national trends of virus circulation. This can tremendously help in designing better preventive regimens in the country, and avoid vaccine breakthrough infections.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.