Purpose
Nowadays, the event detection is so important in gathering news from social media. Indeed, it is widely employed by journalists to generate early alerts of reported stories. In order to incorporate available data on social media into a news story, journalists must manually process, compile and verify the news content within a very short time span. Despite its utility and importance, this process is time-consuming and labor-intensive for media organizations. Because of the afore-mentioned reason and as social media provides an essential source of data used as a support for professional journalists, the purpose of this paper is to propose the citizen clustering technique which allows the community of journalists and media professionals to document news during crises.
Design/methodology/approach
The authors develop, in this study, an approach for natural hazard events news detection and danger citizen’ groups clustering based on three major steps. In the first stage, the authors present a pipeline of several natural language processing tasks: event trigger detection, applied to recuperate potential event triggers; named entity recognition, used for the detection and recognition of event participants related to the extracted event triggers; and, ultimately, a dependency analysis between all the extracted data. Analyzing the ambiguity and the vagueness of similarity of news plays a key role in event detection. This issue was ignored in traditional event detection techniques. To this end, in the second step of our approach, the authors apply fuzzy sets techniques on these extracted events to enhance the clustering quality and remove the vagueness of the extracted information. Then, the defined degree of citizens’ danger is injected as input to the introduced citizens clustering method in order to detect citizens’ communities with close disaster degrees.
Findings
Empirical results indicate that homogeneous and compact citizen’ clusters can be detected using the suggested event detection method. It can also be observed that event news can be analyzed efficiently using the fuzzy theory. In addition, the proposed visualization process plays a crucial role in data journalism, as it is used to analyze event news, as well as in the final presentation of detected danger citizens’ clusters.
Originality/value
The introduced citizens clustering method is profitable for journalists and editors to better judge the veracity of social media content, navigate the overwhelming, identify eyewitnesses and contextualize the event. The empirical analysis results illustrate the efficiency of the developed method for both real and artificial networks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.