Abstract:The handling operations performed in ports require the use of equipment operating in a dynamic environment. Some tasks may not be fully carried out due to equipment failure or power breakdown that may occur particularly with the automated guided vehicles (AGV). The unavailability of equipment such as AGV has important consequences in terms of respecting the deadlines of different operations that a port should perform, such as the loading and unloading operations of ships. This situation can aggravate if there are also traffic problems in the port with some inaccessible network nodes. A part of the equipment will be blocked or the operations will take longer than expected if they don`t take the optimal path to connect the loading/unloading points and storage areas. These reasons confirm the usefulness of establishing a robust system able to resolve the problem of assigning containers in the static and dynamic environments. In a previous work, we developed a system for assigning containers in a static environment. In order to improve this method, we devote this paper to the study of the robustness of our system to the dynamic environment of the port. The numerical tests included in this paper show an adequate performance of our method for this particular dynamic environment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.