The phase transition by thermal activation of natural α-spodumene was followed by in situ synchrotron XRD in the temperature range 896 to 940 °C. We observed both β- and γ-spodumene as primary products in approximately equal proportions. The rate of the α-spodumene inversion is first order and highly sensitive to temperature (apparent activation energy ∼800 kJ mol-1). The γ-spodumene product is itself metastable, forming β-spodumene, with the total product mass fraction ratio fγ/fβ decreasing as the conversion of α-spodumene continues. We found the relationship between the product yields and the degree of conversion of α-spodumene to be the same at all temperatures in the range studied. A model incorporating first order kinetics of the α- and γ-phase inversions with invariant rate constant ratio describes the results accurately. Theoretical phonon analysis of the three phases indicates that the γ phase contains crystallographic instabilities, whilst the α and β phases do not.
This study focuses on the relative energetic stability of β-spodumene configurations with different atomic ordering, evaluated using electronic structure methods based on static periodic density functional theory. We found that β-spodumene configurations with a framework containing exclusively Al-O-Si linkages are energetically the most stable, consistent with the aluminum avoidance principle. A correlation between the interstitial sites occupied by lithium and the stability of the configuration was established: highly stable configurations contain greater proportions of lithium associated with the edges of AlO4 tetrahedrons. The identified low-energy configurations have a band gap of ∼4.8 eV, and similar electronic band structures and densities of states. Both the PBE and PBEsol functionals predict small differences in the relative stabilities of the different configurations of β-spodumene. However, only PBEsol is able to reproduce the experimentally observed stability differences between α-spodumene and β-spodumene. β-Spodumene is the preferred polymorph at high temperatures, with the PBEsol inversion temperature from α- to β-spodumene predicted to occur at 1070 K.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.