Sexism is prevalent in today's society, both offline and online, and poses a credible threat to social equality with respect to gender. According to ambivalent sexism theory (Glick and Fiske, 1996), it comes in two forms: Hostile and Benevolent. While hostile sexism is characterized by an explicitly negative attitude, benevolent sexism is more subtle. Previous works on computationally detecting sexism present online are restricted to identifying the hostile form. Our objective is to investigate the less pronounced form of sexism demonstrated online. We achieved this by creating and analyzing a dataset of tweets that exhibit benevolent sexism. We classified tweets into 'Hostile', 'Benevolent' or 'Others' class depending on the kind of sexism they exhibit, by using Support Vector Machines (SVM), sequenceto-sequence models and FastText classifier. We achieved the best F1-score using FastText classifier. Our work aims to analyze and understand the much prevalent ambivalent sexism in social media.
In this study, the problem of shallow parsing of Hindi-English code-mixed social media text (CSMT) has been addressed. We have annotated the data, developed a language identifier, a normalizer, a part-of-speech tagger and a shallow parser. To the best of our knowledge, we are the first to attempt shallow parsing on CSMT. The pipeline developed has been made available to the research community with the goal of enabling better text analysis of Hindi English CSMT. The pipeline is accessible at 1 .
Spelling correction is a well-known task in Natural Language Processing (NLP). Automatic spelling correction is important for many NLP applications like web search engines, text summarization, sentiment analysis etc. Most approaches use parallel data of noisy and correct word mappings from different sources as training data for automatic spelling correction. Indic languages are resourcescarce and do not have such parallel data due to low volume of queries and nonexistence of such prior implementations. In this paper, we show how to build an automatic spelling corrector for resourcescarce languages. We propose a sequenceto-sequence deep learning model which trains end-to-end. We perform experiments on synthetic datasets created for Indic languages, Hindi and Telugu, by incorporating the spelling mistakes committed at character level. A comparative evaluation shows that our model is competitive with the existing spell checking and correction techniques for Indic languages.
Language is a powerful tool which can be used to state the facts as well as express our views and perceptions. Most of the times, we find a subtle bias towards or against someone or something. When it comes to politics, media houses and journalists are known to create bias by shrewd means such as misinterpreting reality and distorting viewpoints towards some parties. This misinterpretation on a large scale can lead to the production of biased news and conspiracy theories. Automating bias detection in newspaper articles could be a good challenge for research in NLP. We proposed a headline attention network for this bias detection. Our model has two distinctive characteristics: (i) it has a structure that mirrors a person's way of reading a news article (ii) it has attention mechanism applied on the article based on its headline, enabling it to attend to more critical content to predict bias. As the required datasets were not available, we created a dataset comprising of 1329 news articles collected from various Telugu newspapers and marked them for bias towards a particular political party. The experiments conducted on it demonstrated that our model outperforms various baseline methods by a substantial margin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.