Accurate fault diagnosis in air brake is crucial to reduce frequent brake inspection and maintenance in heavy commercial road vehicles. Existing model-based fault diagnostic schemes work well under limited vehicle operating conditions, which is insufficient for developing an on-board monitoring device. In this context, a learning-based fault identification scheme using the Random Forest technique, which accommodates the vehicle's wide operating conditions, is proposed. This scheme identifies the brake's fault levels with a better classification accuracy of 92% compared to techniques such as Naïve Bayes, k-Nearest Neighbors, Support Vector Machine, and Decision Tree. Further, a fault-tolerant controller is proposed to overcome the vehicle's directional instability arising due to the brake fault. Two sliding mode controllers, namely differential brake control and steering angle control, were developed to control the yaw angle. These have been implemented in a Hardware in Loop experimental platform with the vehicle dynamic simulation software TruckMaker ® .
In heavy commercial road vehicles, the air brake system is a critical vehicle safety system whose performance degradation increases the risk of accidents and hence requires periodic inspection and maintenance. The wear of brake pad lining and brake drum during operation leads to increase in the stroke of a component called pushrod whose ‘out-of-adjustment’ creates severe brake performance degradation. The fact that the driver does not receive a corresponding tactile feedback till it is too severe adds to the complexity of manual detection. Motivated by the increase in onboard sensing, electronics, and computation capabilities, this study proposes an artificial neural network–based approach to predict pushrod stroke based on measurement of brake chamber pressure. Here, a back propagation algorithm was used to train the multilayer feed-forward network. The effect of excessive pushrod stroke on vehicle braking response was first studied using a Hardware-in-Loop system that consists of brake system hardware and a commercial vehicle dynamics simulation software (IPG TruckMaker®). Experimental data collected from this system with manual slack adjuster and automatic slack adjuster have then been used to train and test the artificial neural network for pushrod stroke prediction. The performance of the prediction scheme has been tested over the entire range of brake operating conditions. The prediction error corresponding to manual slack adjuster was found to be within ±15% in 322 out of the entire test set of 328 instances (98.17%) and automatic slack adjuster within ±8% in all 57 test sets (100%). Statistical analysis based on confidence interval revealed a prediction error between −1.62% and −3.05% for manual slack adjuster and 0.43% and −1.62% for automatic slack adjuster for 99% confidence interval, which demonstrated the efficacy of the proposed prediction scheme.
Faults in the air brake system used in Heavy Commercial Road Vehicles (HCRVs) would adversely affect the vehicle’s dynamic performance, and hence their prompt detection is critical for vehicle safety. This paper first investigates the effect of air brake system faults through extensive hardware-in-loop experiments. These faults were observed to degrade the braking response, yaw stability, and vehicle braking distance. In many countries, an antilock brake system is mandatory in HCRVs, and wheel speed data are readily available. Inspired by this, the feasibility of using wheel speed data to detect faults is investigated in this study. As an initial step of predictive maintenance, a fault diagnostic scheme based on a supervised learning algorithm, Support Vector Machine (SVM) that uses only wheel speed data has been developed. The SVM algorithm’s efficacy was tested for 1937 test cases that encompassed a wide range of operating conditions. It was found that a Gaussian kernel SVM (G-SVM) provided a good classification accuracy of 96.54%, demonstrating its ability to predict a faulty condition accurately. The standard deviation of G-SVM’s prediction accuracy for five groups of data sets with 100 instances was found to be 1.57%, which shows that the model is more precise to predict the fault/no-fault condition of the air brake system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.