Two cDNA clones encoding catalase (Cat1 and Cat2) from peach [Prunus persica (L.) Batsch] were identified, that show homologies to other plant catalases. The nucleotide sequences of the two coding regions showed 88% identity to each other. The amino acid sequences predicted from the two full-length clones showed the highest homology to a catalase from cotton and Nicotiana plumbaginifolia L. and included C-terminal tri-peptides typical of those used to target proteins to peroxisomes. Southern hybridisation analysis suggested the existence of two catalase genes in peach. The expression of Cat1 and Cat2 was determined in seeds, vegetative tissue, leaves during the seasonal cycle and in leaves in response to light / dark treatments. Cat1 had high levels of expression only in leaf tissue and was responsive to light and seasonal changes. Cat2 had high levels of expression in in vitro shoots and was also responsive to seasonal changes, but not to light. In situ hybridisations to leaf tissue indicated that the expression of Cat1 was localised mainly in palisade cells, while Cat2 mRNA was present in the vascular tissue. The results of the expression analysis and in situ hybridisation suggest a role for Cat1 in photorespiration and for Cat2 in stress responses.
RT-PCR was performed on peach (Prunus persica [L.] Batsch) RNA to isolate cDNAs corresponding to transcripts which are differentially expressed in leaves borne on basal and apical shoots. A gene was identified which was more highly expressed in the leaves of basal shoots, and codes for the cytoplasmic protein S28 present in the small ribosomal subunit. The 5' leader regions of RPS28 mRNAs were found to harbour 8-11 pyrimidine tracts, which suggested similarities to regulatory stretches that control the translation of mRNAs for ribosomal proteins in animals. The peach S28 is encoded by two intron-containing genes, which are both transcribed in mitotically active tissues such as developing leaves and roots. In situ hybridisation to shoot vegetative apices and the measurement of nucleus/nucleolus ratios indicated that RPS28 expression was confined to areas undergoing active cell division. The mature RPS28 mRNA was detected as a single species in actively dividing tissues such as apical tips, developing leaves, vegetative buds, stamens, developing fruits and roots. In contrast, accumulation of a precursor RNA, in the presence of the mature product, was found in fully expanded leaves and subtending stems, while only the precursor species was detected in several late-stage tissues. This phenomenon suggested that expression of the mature RNA is controlled at the level of splicing and turnover of the precursor RNA. This is similar to the mode of regulation of ribosomal protein genes in animals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.