BackgroundInfluenza transmission is often associated with climatic factors. As the epidemic pattern varies geographically, the roles of climatic factors may not be unique. Previous in vivo studies revealed the direct effect of winter-like humidity on air-borne influenza transmission that dominates in regions with temperate climate, while influenza in the tropics is more effectively transmitted through direct contact.Methodology/Principal FindingsUsing time series model, we analyzed the role of climatic factors on the epidemiology of influenza transmission in two regions characterized by warm climate: Hong Kong (China) and Maricopa County (Arizona, USA). These two regions have comparable temperature but distinctly different rainfall. Specifically we employed Autoregressive Integrated Moving Average (ARIMA) model along with climatic parameters as measured from ground stations and NASA satellites. Our studies showed that including the climatic variables as input series result in models with better performance than the univariate model where the influenza cases depend only on its past values and error signal. The best model for Hong Kong influenza was obtained when Land Surface Temperature (LST), rainfall and relative humidity were included as input series. Meanwhile for Maricopa County we found that including either maximum atmospheric pressure or mean air temperature gave the most improvement in the model performances.Conclusions/SignificanceOur results showed that including the environmental variables generally increases the prediction capability. Therefore, for countries without advanced influenza surveillance systems, environmental variables can be used for estimating influenza transmission at present and in the near future.
Interannual climate variability patterns associated with the El Niño-Southern Oscillation phenomenon result in climate and environmental anomaly conditions in specific regions worldwide that directly favor outbreaks and/or amplification of variety of diseases of public health concern including chikungunya, hantavirus, Rift Valley fever, cholera, plague, and Zika. We analyzed patterns of some disease outbreaks during the strong 2015–2016 El Niño event in relation to climate anomalies derived from satellite measurements. Disease outbreaks in multiple El Niño-connected regions worldwide (including Southeast Asia, Tanzania, western US, and Brazil) followed shifts in rainfall, temperature, and vegetation in which both drought and flooding occurred in excess (14–81% precipitation departures from normal). These shifts favored ecological conditions appropriate for pathogens and their vectors to emerge and propagate clusters of diseases activity in these regions. Our analysis indicates that intensity of disease activity in some ENSO-teleconnected regions were approximately 2.5–28% higher during years with El Niño events than those without. Plague in Colorado and New Mexico as well as cholera in Tanzania were significantly associated with above normal rainfall (p < 0.05); while dengue in Brazil and southeast Asia were significantly associated with above normal land surface temperature (p < 0.05). Routine and ongoing global satellite monitoring of key climate variable anomalies calibrated to specific regions could identify regions at risk for emergence and propagation of disease vectors. Such information can provide sufficient lead-time for outbreak prevention and potentially reduce the burden and spread of ecologically coupled diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.