Abstract:Iron-based substrates with polyethylene glycol coating were prepared as possible materials for biodegradable orthopedic implants. Biodegradable materials that provide mechanical support of the diseased tissue at the time of implanting and then disappear gradually during the healing process are sometimes favored instead of permanent implants. The implant degradation rate should match the time of the tissue regrowth. In this work, the degradation behavior of iron-based foams was studied electrochemically during immersion tests in Hanks' solution. The corrosion rate of the polyethylene glycol-coated samples increased and the corrosion potential shifted to more negative values. This indicates an enhanced degradation rate as compared to the uncoated material, fulfilling the goal of being able to tune the degradation rate. It is the interfacial interaction between the hydrophilic polymer layer and the iron surface that is responsible for the enhanced oxidation rate of iron.
Research in the field of biodegradable metallic scaffolds has advanced during the last decades. Resorbable implants based on iron have become an attractive alternative to the temporary devices made of inert metals. Overcoming an insufficient corrosion rate of pure iron, though, still remains a problem. In our work, we have prepared iron foams and coated them with three different concentrations of polyethyleneimine (PEI) to increase their corrosion rates. Scanning electron microscopy (SEM) coupled with energy dispersive X-ray analysis (EDX), Fourier-transform infrared spectroscopy (FT-IR), and Raman spectroscopy were used for characterization of the polymer coating. The corrosion behavior of the powder-metallurgically prepared samples was evaluated electrochemically using an anodic polarization method. A 12 weeks long in vitro degradation study in Hanks’ solution at 37 °C was also performed. Surface morphology, corrosion behavior, and degradation rates of the open-cell foams were studied and discussed. The use of PEI coating led to an increase in the corrosion rates of the cellular material. The sample with the highest concentration of PEI film showed the most rapid corrosion in the environment of simulated body fluids.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.