Introduction A standard osteosynthetic material for maxillofacial skeleton is titanium and its alloys. The convenience of degradable material is avoiding of second surgery in cases, where removal of the material is necessary. Magnesium biodegradable alloys have similar mechanic properties as cortical bone - reasonable corrosion and sufficient biologic properties. They might be used in facial skeleton fixation. Materials and methods The study included a total of 16 rabbits, and they were randomly divided into two groups. Each group received two screws (WE4 and titanium as a standard material) in artificially drilled defect into right tibia. Animals were euthanized at four-week intervals. Bone samples with implants underwent microfocus CT scans and were histologically examined. Results WE43 alloys showed fragmentation of the material on the 16th week - statistically significant volume loss was found between weeks 12 and 16. Bone healing around the WE43 screws was of similar quality as around titanium screws, and no adverse effect was noticed. Conclusion The study showed good quality of bone healing around WE43 implants. From this point of view, the WE43 alloy meets the requirements of osteosynthetic material for maxillofacial skeleton.
In this pilot study, we investigated the biocompatibility and degradation rate of an extruded Zn–0.8Mg–0.2Sr (wt.%) alloy on a rabbit model. An alloy screw was implanted into one of the tibiae of New Zealand White rabbits. After 120 days, the animals were euthanized. Evaluation included clinical assessment, microCT, histological examination of implants, analyses of the adjacent bone, and assessment of zinc, magnesium, and strontium in vital organs (liver, kidneys, brain). The bone sections with the implanted screw were examined via scanning electron microscopy and energy dispersive spectroscopy (SEM-EDS). This method showed that the implant was covered by a thin layer of phosphate-based solid corrosion products with a thickness ranging between 4 and 5 µm. Only negligible changes of the implant volume and area were observed. The degradation was not connected with gas evolution. The screws were fibrointegrated, partially osseointegrated histologically. We observed no inflammatory reaction or bone resorption. Periosteal apposition and formation of new bone with a regular structure were frequently observed near the implant surface. The histological evaluation of the liver, kidneys, and brain showed no toxic changes. The levels of Zn, Mg, and Sr after 120 days in the liver, kidneys, and brain did not exceed the reference values for these elements. The alloy was safe, biocompatible, and well-tolerated.
This study investigated formation of protective deposits on the enamel surface after application of several anti-erosive toothpastes with different active ingredients. NaF-containing Sensodyne Pronamel, SnCl /F-based Elmex Erosion Protection and calcium phosphate-based BioRepair Plus Sensitivity Control, SensiShield and Enamel Care toothpastes with claimed anti-erosive properties were tested. Artificial saliva and Elmex Erosion Protection mouth rinse served as control groups. The toothpastes were applied 30 times by a toothbrush for 2 min per day, mouth rinse for 30 s on polished enamel of thirty five human molars (n = 5) with series of five rhomboid-shaped indents of various length prepared by a Knoop indentor. After 15 and 30 applications, the shape of the indents and surface morphology was characterised using light and scanning electron microscopy. At the end of treatment, the samples were exposed to 0.2 wt. % citric acid (pH 3.30) to test resistance of the treated enamel to erosion. Pronounced differences were observed between protective properties of the toothpastes. While Sensodyne Pronamel and BioRepair Plus Sensitivity Control did not produce any protective deposits, Enamel Care formed a compact layer of deposits which protected the enamel surface against erosion. With Elmex Erosion Protection and SensiShield fractured indent edges and scratches on the treated enamel suggested that their abrasive properties prevailed over ability of active ingredients to form deposits. These results revealed that toothpastes with strong potential to form acid-resistant deposits on the enamel surface and of low abrasivity should be used for effective prevention of enamel erosion. SCANNING 38:380-388, 2016. © 2015 Wiley Periodicals, Inc.
The aim of this study was to compare the effect of several commercially available disinfectants on the accuracy of various types of impression materials and their compatibility with gypsum including surface quality and structure evaluation. Four alginate and three elastomeric impression materials in combination with disinfectants Aseptoprint Liquid, Zeta 7 solution, Silosept and Dentaclean Form were tested. The dimensional changes, detail reproduction, the compatibility with gypsum and surface/subsurface morphology were evaluated using light microscopy, scanning electron microscopy and micro computed tomography. Two alginate materials disinfected in Dentaclean Form exhibited the most significant differences (p<0.0001). The loss of detail on some alginate impressions in combination with this disinfectant including deterioration and change of morphology of gypsum surfaces was observed. Porosity in subsurface area and exposed large particles were detected. It was confirmed that the desired properties of impressions may be negatively affected in combination with some disinfectants.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.