The use of large, high pressure liquid petroleum gas (LPG) storage bullets has become a common, and often assumed safe, practice in the petrochemical industry. The Engineering Equipment and Materials Users Association (EEMUA) is an organization that has attempted to address design aspects related to mounded or buried bullets; Publication No. 190 published by the EEMUA (2000, Guide for the Design, Construction and Use of Mounded Horizontal Cylindrical Vessels for Pressurized Storage of LPG at Ambient Temperatures, EEMUA, London, England.) became a standard practice in the industry. However, the design recommended, and therefore addressed, by Publication 190 is for bullets directly supported by soil (i.e., without saddle supports). However, it has been noticed by the authors that many users are requesting these storage bullets be supported by saddles resting on foundations in order to minimize the chance of unexpected settling and any motion of the bullets underground. The large span of these bullets requires more than two saddles adding to the complexity of the design due to statically indeterminate construction, differential settlement, and uneven supports. This paper focuses on major issues related to the design of such bullets. First, the loads induced by mound weight, pressure due to mound, and the loads due to longitudinal thermal expansion and soil resistance to this expansion is analyzed. Next, a method for calculating the multiple saddle reactions and bending moments at spans and supports is provided. A simplified method for assessing the effect of differential settlement between saddles is proposed.
Today’s hydroprocessing reactor manufacturers use 2¼Cr–1Mo–¼V steel to build lighter reactors than conventional Cr-Mo reactors. Manufacturing even lighter hydroprocessing reactors has been enabled with the introduction of the new ASME Section VIII Division 2 Code, initially released in 2007. The higher allowable stresses in the new Division 2 for these Vanadium-modified steels permits even lighter reactors to be built while maintaining suitable design margins. The new Division 2 Code requires additional engineering to ensure safe design. One of the challenges the engineer is faced with, is preparation of the User’s Design Specification (UDS) including new and more stringent requirements for fatigue evaluation. As the operating temperature of the rector is higher than 371°C, engineers have to evaluate the fatigue life of the reactor in accordance with Code Case 2605 (CC2605). CC2605 requires inelastic analysis and evaluation effects of creep. Vanadium-modified reactors require additional care during fabrication to prevent higher hardness around weld areas, reheat cracking, and reduced toughness at lower temperatures in the “as welded” condition. This paper provide guidance for the preparation of an ASME Section VIII Division 2 User’s Design Specification including process descriptions of all the cycles expected for the life of the rector and analysis requested by CC2605. An example of such an analysis, including finite element analysis results, is provided in this paper. Requirements to provide the material specification is also discussed with an emphasis on prevention of reheat cracking, hardenability, and temper and hydrogen embitterment.
Depending on plant/site location, it may be advantageous to dress a vertical vessel, in horizontal position, prior to erection. Dressing refers to the installation of items attached to the vessel such as internals, insulation, piping, ladders, platforms, electrical cable trays, lighting, etc. The decision to dress a vessel may be due to safety, schedule or economic reasons. Dressing a vessel results in higher lifting loads. Vessel Codes address loadings to be considered when designing a vessel in its operating position and not necessarily for lifting. Since the Codes do not address erection loadings, engineering judgment must be used in their consideration and analysis in order to avoid overstressing the vessel. In some cases, erection loads govern the design thickness of the vessel. Lifting analysis in the context of this paper is the evaluation of stresses in the vessel when it is initially picked up from the horizontal position. This paper discusses the compressive stresses which usually govern in the lifting analysis of thin-walled vessels. Different methods used in literature and industry are presented in the paper. Some Owners/Users, engineering firms, and fabricators use the Factor B in ASME Section II, Part D, Subpart 3 as the limiting criterion for compressive stresses. In some cases, this criterion is too conservative. This paper presents the application of alternative buckling criteria for lifting analysis.
Equipment that is exposed to severe operational pressure and thermal cycling, like coke drums, usually suffer fatigue. As a result, equipment of this sort develop defects such as cracking in the circumferential welds. Operating companies are faced with the challenges of deciding what is the best way to prevent these defects, as well as determining how long they could operate if a defect is discovered. This paper discusses a methodology for fracture mechanics testing of coke drum welds, and calculations of the critical crack size. Representative samples are taken from production materials, and are welded employing production welding procedures. The material of construction is 1.25Cr-0.5Mo low alloy steel conforming to ASME SA-387 Gr 11 Class 2 in the normalized and tempered condition (N&T). Samples from three welding procedures (WPS) are tested: one for production, one for a repair with heat treatment, and one for repair without heat treatment. The position and orientation of test specimen are chosen based on previous surveys and operational experience on similar vessels that exhibited cracks during service. Fracture mechanics toughness testing is performed. Crack finite element analysis (FEA) model is used to determine the path-independed JI-integral driving force. Methodology for the determination of critical crack size is developed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.