A family of compact and positively invariant sets with uniformly bounded fractal dimension which at a uniform exponential rate pullback attract bounded subsets of the phase space under the process is constructed. The existence of such a family, called a pullback exponential attractor, is proved for a nonautonomous semilinear abstract parabolic Cauchy problem. Specific examples will be presented in the forthcoming Part II of this work.
We prove that stable and unstable manifolds of hyperbolic periodic orbits for general scalar reactiondiffusion equations on a circle always intersect transversally. The argument also shows that for a periodic orbit there are no homoclinic connections. The main tool used in the proofs is Matano's zero number theory dealing with the Sturm nodal properties of the solutions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.