The main challenge of the economy is counteracting the adverse effects of progressive industrialisation on the environment around the world. Economic development that accompanies this trend correlates to production increase in not only consumer articles but also special application articles that are difficult to remanufacture, such as medical supplies. For many researchers, discovering innovative materials for special applications that could become an essential element of circular economy production is important. Measures to reduce the production of industrial materials whose waste is difficult to recycle are more and more apparent to manufacturers, especially when faced with the new financial situation in European Union, as one of its priorities is to implement the principles of circular economy. The purpose of the article is to analyse the current state of research on special-application biomaterials within the context of the circular economy. Empirical analysis is conducted for Poland compared to the rest of the European Union (EU) within the time-frame of 2014–2020, which is the most recent financial timeframe of the EU. The submitted studies are based on secondary data obtained mainly from European databases, as well as primary data resulting from the research works at Łukasiewicz Research Network—Institute of Biopolymers and Chemical Fibres.
Green entrepreneurship is an important phenomenon from the point of view of economic development. However, the topic has not been sufficiently analysed and knowledge in this area is not systematised. Supporting the development of green enterprises and increasing the resilience of the economy and natural ecosystems requires a more in-depth analysis of the conditions and factors that influence the development of green entrepreneurship. Green (or ecological) entrepreneurship is closely related to the textile sector, which should be particularly interested in the introduction of various types of eco-innovations that reduce or prevent negative environmental impacts while contributing to the achievement of competitive advantage and profitability. The textile sector is focused on sustainability issues – both in terms of environmental protection and global social responsibility. The goal of this paper is to organise knowledge on the phenomenon of green entrepreneurship and to analyse the prospects of its development in the light of opinions of Polish textile industry entrepreneurs. For this purpose, a survey was conducted on 56 Polish companies from the textile industry. The results obtained indicate that Polish textile industries are interested in implementing all kinds of eco-innovations concentrated in the so-called environmental management system, which should become part of any organisation in the sector analysed. The paper is divided into three main parts. In the first part the phenomenon of green entrepreneurship is characterised. Then the methodology of the survey is presented. The final part is a presentation of results of the survey conducted in Polish textile industry enterprises.
Background Tissue-engineered blood vessels (TEBV) represent an attractive approach for overcoming reconstructive problems associated with vascular diseases in humankind by providing small caliber vascular grafts. The study evaluates biocompatibility and bioaffinity of vascular prostheses made from chitosan-modified bacterial cellulose (MBC) as potential scaffolds for TEBV. Methods During the study, acute oral toxicity, up-and-down procedure (UDP), OECD test No. 425 on 10 Imp:WIST rats, intradermal reactivity on three Imp:BN albino rabbits, and sensitization on 15 Imp:DH guinea pigs were performed. The local effects were determined 1 month after intramuscular implantation of prostheses in 30 Imp:WIST rats. Histopathological and pathomorphological studies were conducted following complete removal of implants with peri-implant tissue. Results There were no signs of toxicity; the median lethal oral dose (LD50) was greater than 2 g/kg body weight for the rats. No allergic reactions were observed in the case of the guinea pig maximization test. Vascular grafts did not induce significant reactive changes in intradermal reactivity test (Main Irritation Index value 0.03) and do not induce inflammatory changes or hyperplasia of the muscle tissue surrounding the implant. Histopathological examination revealed ingrown vascular-connective bands. Conclusions Tubes made of MBC offer strong potential for use in future TEBV programs for vascular surgery. Lay Summary Currently, the number of autologous grafts for coronary artery disease and for peripheral artery disease is limited. Particularly materials that will have contact with blood must comply with certain requirements such as mechanical strength, biocompatibility, and no potential to evoke adverse reactions. Bacterial nanocellulose modified with chitosan (MBC) due to its mechanical and biological properties is a promising material for replacing small-diameter vessels grafts. Although previous studies have not shown the toxicity of nanocellulose, we want to check whether medical products based on MBC will be safe when testing in vivo. Thirty Imp:WIST rats and 15 Imp:DH guinea pigs were subject of thorough analysis of potential toxicological and sensitization effect that may develop after applying vascular prostheses made from MBC to living organism. The analysis involved also histopathological and pathomorphological studies following complete removal of implants with peri-implant tissue. The results show that MBC prostheses do not cause any allergic, intradermal reactions and finally, do not display acute toxicity towards the organism in which it is implanted. Moreover, they had not induced inflammatory changes or hyperplasia of the muscle tissue surrounding the implantation sites, thus showing good biocompatibility. Obtained results were discussed with other available studies investigating various aspects of bacterial cellulose or modified bacterial cellulose influence on cells and tissues in both in vitro and in vivo studies. This is the first study analyzing the toxicological and sensitization effect which MBC may evoke and confirm the strong potential for use in future TEBV programs for vascular surgery. Graphical Abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.