Ovarian cancer is the most lethal gynaecological cancer. The main reason for the high mortality among ovarian cancer patients is the development of drug resistance. The expression of collagen genes by cancer cells can increase drug resistance by inhibiting the penetration of the drug into the cancer tissue as well as increase apoptosis resistance. In this study, we present data that shows differential expression levels of collagen genes and proteins in cisplatin- (CIS), paclitaxel- (PAC), doxorubicin- (DOX), topotecan- (TOP), vincristine- (VIN) and methotrexate- (MTX) resistant ovarian cancer cell lines. Quantitative real-time polymerase chain reactions were performed to determine the mRNA levels. Protein expression was detected using Western blot and immunocytochemistry assays. In the drug resistant cell lines, we observed the upregulation of eight collagen genes at the mRNA level and based on these expression levels, we divided the collagen genes into the following three groups:1. Genes with less than a 50-fold increase in expression: COL1A1, COL5A2, COL12A1 and COL17A1. 2. Genes with greater than a 50-fold increase in expression: COL1A2, COL15A1 and COL21A1. 3. Gene with a very high level of expression: COL3A1. Expression of collagen (COL) proteins from groups 2 and 3 were also confirmed using immunocytochemistry. Western blot analysis showed very high expression levels of COL3A1 protein, and immunocytochemistry analysis showed the presence of extracellular COL3A1 in the W1TR cell line. The cells mainly responsible for the extracellular COL3A1 production are aldehyde dehydrogenase-1A1 (ALDH1A1) positive cells. All correlations between the types of cytostatic drugs and the expression levels of different COL genes were studied, and our results suggest that the expression of fibrillar collagens may be involved in the TOP and PAC resistance of the ovarian cancer cells. The expression pattern of COL genes provide a preliminary view into the role of these proteins in cytostatic drug resistance of cancer cells. The exact role of these COL genes in drug resistance requires further investigation.
Ovarian cancer is the leading cause of death among gynaecological malignancies. Multiple drug resistance makes cancer cells insensitive to chemotherapy. In this study, we developed six
primary ovarian cancer cell lines (W1MR, W1CR, W1DR, W1VR, W1TR, and W1PR) resistant to drugs such as methotrexate, cisplatin, doxorubicin, vincristine, topotecan, and paclitaxel. A chemosensitivity assay MTT test was performed to assess drug cross-resistance. Quantitative real-time polymerase chain reaction and Western blot were also performed to determine mRNA and protein expression of genes involved in chemoresistance. We observed high cross-resistance to doxorubicin, vincristine, and paclitaxel in the cell lines resistant to these agents. We also found a significant correlation between resistance to these drugs and increased expression of P-gp. Two different mechanisms of topotecan resistance were observed in the W1TR and W1PR cell lines. We did not observe any correlation between MRP2 transcript
and protein levels. Cell lines resistant to agents used in ovarian cancer treatment remained sensitive to methotrexate. The main mechanisms of drug resistance were due to P-gp expression in the doxorubicin, vincristine, and paclitaxel resistant cell lines and BCRP expression in the topotecan resistant cell line.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.