The purpose of this study was to evaluate the feasibility of using magnesium and sodium lignosulfonates (LS) in the production of particleboards, used pure and in mixtures with urea-formaldehyde (UF) resin. Polymeric 4,4′-diphenylmethane diisocyanate (pMDI) was used as a crosslinker. In order to evaluate the effect of gradual replacement of UF by magnesium lignosulfonate (MgLS) or sodium lignosulfonate (NaLS) on the physical and mechanical properties, boards were manufactured in the laboratory with LS content varying from 0% to 100%. The effect of LS on the pH of lignosulfonate-urea-formaldehyde (LS-UF) adhesive compositions was also investigated. It was found that LS can be effectively used to adjust the pH of uncured and cured LS-UF formulations. Particleboards bonded with LS-UF adhesive formulations, comprising up to 30% LS, exhibited similar properties when compared to boards bonded with UF adhesive. The replacement of UF by both LS types substantially deteriorated the water absorption and thickness swelling of boards. In general, NaLS-UF-bonded boards had a lower formaldehyde content (FC) than MgLS-UF and UF-bonded boards as control. It was observed that in the process of manufacturing boards using LS adhesives, increasing the proportion of pMDI in the adhesive composition can significantly improve the mechanical properties of the boards. Overall, the boards fabricated using pure UF adhesives exhibited much better mechanical properties than boards bonded with LS adhesives. Markedly, the boards based on LS adhesives were characterised by a much lower FC than the UF-bonded boards. In the LS-bonded boards, the FC is lower by 91.1% and 56.9%, respectively, compared to the UF-bonded boards. The boards bonded with LS and pMDI had a close-to-zero FC and reached the super E0 emission class (≤1.5 mg/100 g) that allows for defining the laboratory-manufactured particleboards as eco-friendly composites.
The woodworking industry generates a great amount of bark which has not yet found a wider industrial application. None of the previously conducted research has considered oak bark application (which is one of the most often processed wood species in Poland) as a filler for wood adhesives. Moreover, no studies have determined the properties of bark containing melamine-urea-formaldehyde resin (MUF), which increasingly replaces pure urea-formaldehyde adhesives. Thus, the aim of the study was to determine the possibility of grinded oak bark application as a filler for MUF adhesive in plywood manufacturing. The chemical composition of oak bark was evaluated. Properties of liquid resins, such as viscosity, gel time, pH, and solid content, were determined. Chemical interaction between the filler and resin was assessed with using Fourier-transform infrared (FTIR) spectroscopy. Plywood panels manufactured using MUF adhesive filled with different bark concentrations (10%, 15%, 20%, 25%) were tested in terms of such properties as formaldehyde release and bonding quality. Studies have shown an improvement in liquid resin properties. The course of FTIR spectra did not explain the chemical interaction between the polymer and the filler. The addition of oak bark at a concentration of 15% made it possible to produce plywood panels characterized by reduced formaldehyde release and improved bonding quality.
The objective of this study was to determine normal impedance on the surface as well as sound absorption coefficients for several wood species from Europe and from the tropical zone. The mathematical models of Miki, Attenborough, and Allard – dealing with acoustic properties of porous materials – have also been compared. The air flow resistivity exhibits a distinct link between fiber dimensions and wood porosity. The highest sound absorption coefficient was found for oak, ash, sapeli, and pine woods at 2 kHz frequency. The Attenborough model provides results closest to laboratory measurements, although it still requires significant improvements. The Miki and Allard models have some drawbacks and should be applied with reservation for the determination of wood acoustic properties.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.