There is an increasing interest in the application of deep learning architectures to tabular data. One of the state-of-the-art solutions is TabTransformer which incorporates an attention mechanism to better track relationships between categorical features and then makes use of a standard MLP to output its final logits. In this paper we propose multiple modifications to the original TabTransformer performing better on binary classification tasks for three separate datasets with more than 1% AUROC gains. Inspired by gated MLP, linear projections are implemented in the MLP block and multiple activation functions are tested. We also evaluate the importance of specific hyper parameters during training.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.